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Synopsis
The low energy properties of nuclei are calculated, using a model which 

combines certain important features of the unified nuclear model and the inde­
pendent-particle model with a two-body residual interaction. The residual interaction 
used has two parts, a pairing force and a long range part. Calculations are done 
for nuclei with a major closed proton or neutron shell, A >48, for various values 
of the two strength parameters, using single-particle levels taken from experiment. 
In each region, the calculated energy levels and spins agree in considerable detail 
with systematic experimental data. In addition, the even-odd-A mass difference, 
the electromagnetic transition rates, and other properties are calculated and 
compared to experiment. The approximate 1 /A dependence of the parameters 
is consistent with a volume force.
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I. Introduction

In the past several years, much evidence has been gathered by studying the 
low energy spectra of nuclei, and it has been possible to interpret many 

of the main observed features by the Unified Nuclear Model, i. e., in terms 
of the motions of individual particles in an effective nuclear potential1) and 
collective excitations of rotational and vibrational character2).

At the same time, attempts have been made to understand nuclear 
properties in terms of shell model particles interacting with a two-body 
force3). The detailed calculations in a single j shell for lighter nuclei have 
shown that in many cases it is possible to calculate approximately the 
energy levels by using specific nuclear forces. However, these calculations 
with pure configurations are not valid for heavier nuclei where configura­
tion mixing becomes very important. Still, shell model calculations with a 
two-body force show that it is possible to derive many of the properties 
of nuclei with a few particles outside of closed shells by using a two-bodv 
force between particles which move in a well taken from experiment. 
However, for more than two or three particles in the system such calcula­
tions become extremely involved.

More recently, progress has been made in solving the many-body problem 
for specific models. Such work shows that it may be possible to derive 
the Unified Nuclear Model from a shell model description with the inclusion 
of a two-body interaction4). The first step was made by Elliott who showed 
how the collective deformation and the associated rotational spectra can 
be obtained for particles in a harmonic oscillator potential interacting with 
a specific two-body force having angular dependence given by (cos 0), 
with 0 representing the angle between the particles5). Later work6) provided 
evidence that this is a general characteristic of the coupling scheme arising 
from interactions with a slow angular dependence, such as that of P<2> (cos 6). 
Since the low multipoles of the force are associated with the relatively 
long range part of the interaction, it therefore appears that this part of 
the nuclear interaction may be treated in terms of a deformed field acting 
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upon the individual nucleons, and is responsible for the associated collective 
nuclear properties.

The observed nuclear spectra clearly reveal, however, that there are 
important additional interaction effects which cannot be incorporated into 
the nuclear field. These residual interactions are responsible, for instance, 
for the shift of the intrinsic observed levels from the independent-particle 
prediction, for the collapse of the deformation with the approach to the 
closed shell regions, and for the energy gap observed in the intrinsic nuclear 
spectra. These two-body interactions should arise from the relatively short 
range part of the two-bodv interaction. A crucial problem has therefore 
been to develop methods to treat the effect of the short range part of the 
nuclear force in many-particle configurations.

A new approach to this problem was suggested by the recent develop­
ment in the theory of superconductivity7). Methods have become available 
for treating the effects of a simplified interaction, the “pairing force”, by 
which we mean a force which has constant matrix elements in a (j/n), 
(/ — m) representation, l.e., the matrix elements of the pairing force between 
states of two particles in a J-level and two particles in a /'-level are propor­
tional to I [(2/+ 1 )/‘2H(2//+1)/2] if the total angular momentum in both 
states is zero, and vanishes otherwise. Such a force appears to represent 
many of the characteristic features of a short range interaction8)’9). It is 
hoped that specific differences between a short range force and the pairing 
force interaction can be calculated for individual properties when such 
differences are important.

The pairing force is a generalization of an interaction operator earlier 
introduced by Racah, which characterizes the seniority coupling scheme 
for (j)" configurations. The new method therefore also leads to a gene­
ralization of the seniority concept in terms of the “quasi-particles”. States 
of different seniority are separated by relatively large energies, and the 
gap in the nuclear excitation spectrum is thereby introduced, in analogy 
to that of the superconducting metals.

A nuclear model in which the interaction is represented by two simple 
components, the pairing force plus the long range part, usually represented 
by a quadrupole force, has been studied in some detail by Belyaev10) who 
showed that it contains the main qualitative features of the observed spectra. 
In particular, it accounts for the gradual transition from the closed shell 
regions to the regions of deformed nuclei with the associated vibrational 
and rotational modes of excitation.

Calculations with the model have so far, however, been based on a 
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greatly simplified single-particle level spectrum; especially the case of 
particles in a single degenerate level, such as a major shell in an oscillator 
field, have been treated11). A quantitative comparison with experimental 
data has therefore not been possible. To this purpose it is essential to intro­
duce the proper succession and separation of the low lying single-particle 
levels available to the particles outside of closed shells.

In the present investigation we have attempted to perform such more 
realistic calculations, with a pairing force plus a P(2) force, based on avail­
able information about the single-particle level spectrum of the shell model, 
and to make a comparison with experimental data on the low energy 
nuclear properties.

For simplicity, we have restricted ourselves to nuclei in which either 
the neutrons or the protons are in a major closed shell. We shall refer to 
these as s.c.s. (single closed shell) nuclei. For this reason, we do not have 
to deal with the difficult problem of the short range interaction between 
neutrons and protons. These isotopes do not seem to possess a static 
equilibrium deformation and we can therefore use the spherical wave 
functions as a basis from which to start the calculation. The single-particle 
levels, when known, are taken from experiments on isotopes with one par­
ticle or hole outside of a double closed shell. In other cases, their positions 
are estimated from other experimental results and from theoretical calcula­
tions of the nuclear well.

Since the s.c.s. nuclei have a spherical equilibrium shape, the pairing 
force must in some sense be stronger than the P<2) force. For this reason, 
we first calculate the excitation energies of the s.c.s. nuclei with only the 
pairing force acting between shell model particles. We do this approximately, 
using the Bardeen solutions. Subsequently, the effect of the P(2) force is de­
termined by the deformed field method. Of course, with such a simple 
force we cannot expect to derive the detailed quantitative properties of 
these nuclei, but rather attempt to find the main systematic features and 
to identify the main parts of the nuclear wave functions. We do expect 
that certain of the specific nuclear properties which are not given correctly 
by our wave functions might be derived from them by perturbation theory.

In Chapter II, the canonical transformation of the pairing Hamiltonian 
to the quasi-particle system is reviewed and the results are given which 
are important for the present calculation. We also describe the transforma­
tion to the collective coordinates to obtain the collective states. As an 
example of a possible interaction between quasi-particles, the perturbation 
theory results for the P(2) force are derived.
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In Chapter III, the results for the energy levels of odd-A and even-A 
nuclei are presented for the various nuclear regions treated, along with 
discussions of the single-particle wells and the strength of the pairing and 
p(2) force in each case. In Chapter IV, the gap which results from our 
solutions is compared to that measured by the even-odd mass differences. 
In Chapter V, the expressions for the quadrupole moments are derived 
with our wave functions, and our theoretical predictions are compared to 
experiment. In Chapter VI, our calculated magnetic moments are compared 
to experiment and the additional shifts in the magnetic moments which 
are produced by a short range force differing from the pairing force are 
considered. In Chapter VII, the alterations of the electromagnetic transition 
rates caused by the pairing force and the P(2) force are investigated and 
the results compared to the experimental values.

II. The Hamiltonian and Approximate Solutions
A. The Hamiltonian

The basic assumption of this work is that, in the space of the wave 
functions for the low energy states of nuclei, the nuclear system can be 
represented as closed shells plus shell model particles which move in a 
well which changes only slowly as the number of particles changes, and 
which interact with a pairing force and a P(2) force.

Implicit in this assumption is the fact that the excitations of the core 
particles involve energies which are large compared Io the excitations of 
the extra-core particles. To the extent that this is true we expect that the 
main effect of ignoring the core states as well as ignoring the states in the 
shells higher than the shell which we consider is to renormalize the para­
meters of the residual two-body interaction. Since we use a force which 
reproduces the low energy properties of s.c.s. nuclei, we implicitly include 
such contributions.

With regard to the long range part of the force, there are additional 
contributions from the core as are revealed by the polarization effects for 
one particle outside of a double closed shell, such as the enhanced E2 
transitions in O17 and Pb207. These are included in the present work by 
using a renormalized charge and quadrupole moment for the extra-core 
particles. The change in the positions of the single-particle levels with A 
is neglected within each s.c.s. region.

Letting |0>, |jm>, and |j-m> stand for the shell model particle 
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vacuum, and states with one shell model particle with angular momentum 
j- and z-component m and - m, respectively, the other quantum numbers 
being suppressed, we define the particle-creation operators

\jm>

b]_m 10 > = I j- m > = T I jin >,

where r is the time-reversal operator*.  In terms of these operators, the 
assumption is that the low energy states of s.c.s. nuclei are eigenstates of 
the Hamiltonian

* The states |/-m > have the phases (-l)?_mx the states used by A. R. Edmonds “Angular 
Momentum in Quantum Mechanics”, Princeton University Press, Princeton, New Jersey (1957). 
Thus, the orbital spherical harmonics are defined as ilYlm and the spin states have an intrinsic 
phase of tt/2 under time reversal. This choice of phases results in the same signs for the ampli­
tudes of the |/m>|/-m> states which are components of a (/2)0 state.

H ~ bjm — o —
jm “ jj'mm'

- o Z E <J1 4 I $(2) IJ 2 mi > b^ b^ mi
iiiziii-z

mi m-imy

In (2), £; are the single j shell particle levels, G is the strength parameter 
for the pairing force, and is the operator for the PM force (cf. II. C.), 
with a strength parameter /.

Since the solution to the pairing part of the problem is simplified by 
transforming to a system in which the number of particles is not conserved, 
an auxiliary Hamiltonian is introduced which is related to H' by

H = H'- Z Ar = H'- Â h,-w , (3)

where À, the chemical potential, is a Lagrangian multiplier included to take 
into account the constraint that for the solutions P, (P | 2V| P) = n, the proper 
number of particles. Solutions to H with various values of G and / are found 
for each s.c.s. region and a comparison shows that the A dependence of 
these parameters is consistent with their being a volume force.

(2)

(1)
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B. Pairing Force

1. Canonical Transformation to an Independent-Particle Hamiltonian
The ground state of the independent-particle Hamiltonian without 

residual interactions corresponds to filling of the single-particle levels with 
a sharp cutoff at the Fermi energy. Le., all of the single-particle levels below 
the Fermi energy are definitely occupied and all of those above the Fermi 
energy are definitely unoccupied in the shell model ground state configura­
tions. In the presence of the residual interactions, some of the particles are 
excited from the occupied single-particle levels to the levels which were 
unoccupied. The ground state of the Hamiltonian with a short range residual 
interaction corresponds to a diffuse distribution of the particles in the 
single-particle levels, with a region of energy near the Fermi energy, where 
the product, (J2 V2, of the probability of occupation of a level, V2, and the 
probability of non-occupalion of a level, (J2, is not zero. Based on this physical 
picture, the method used in the present work is to express the ground 
state of the Hamiltonian with a pairing force residual interaction as an 
admixture of shell model configurations with the admixture coefficients 
determined by the (J’s and V’s.

The energy level of an excited state of the independent-particle Hamil­
tonian without residual interactions is found simply by summing the single­
particle energies of the excited configuration. In the presence of short range 
forces, the present method of solution allows one to identify once more 
independent modes of excitation, so that the energy level of an excited state 
eigenfunction with pairing forces present can be found approximately by 
simply adding the elementary excitation energies. Indeed, the independent 
excitations in the presence of the pairing forces are usually quite different 
from the single-particle shell model energy differences.

A convenient approximate solution for that part of Eq. (3) not including 
the P(2) force can be found by introducing the Bogolubov-Valatin canonical 
transformation into “quasi-particle” creation and annihilation operators7)

Thus, a quasi-particle creation operator is a linear combination of a shell 
model particle and a shell model hole creation operator. The physical 
interpretation of Uj and Vj will be that Vf is the probability of the pair 



Nr. 9 11

(jin, j- in) being found in the ground state, while Uf, of course, is the prob­
ability for non-occupancy, as can be seen from Eq. (8). Written in terms 
of these new Fermion operators, the Hamiltonian (in normal form) is

(5) 

where HG refers to the Hamiltonian (3) without the P(2) force. U is independ­
ent of quasi-particle operators, HX1 is an operator of single quasi-particle 
type, i.e., each term has a factor (a+ a + ß+ ß), and H20 creates or annihilates 
two quasi-particles. which contains products of four quasi-particle 
creation or annihilation operators, is ignored.7)’ 10) Therefore, when H2n 
is set identically equal to zero, the Hamiltonian (5) describes a system 
of non-interacting quasi-particles. The long range part of the two-body 
force will lead to an interaction between quasi-particles, as will be seen 
in the next section.

The result of setting H20 = 0 is the gap equation

2 |/(£;-Â)2 + A2 ’ (6)

where

3 
u2 = 1 [ 1 + -- -

7 M |/(«j-Â)2 + d2j (7)

v2 = 111 - 1
7 2L J/(^-â)2 + zi2]’

and £2; = /+l/2 is the pair degeneracy of the j level. The essential problem
in finding the solutions is determining 2 and A, which are found by the
simultaneous solution of the gap equation (6) together with the equation 
which results from fixing the mean number of particles (cf. (13)).

The wave functions are simply the quasi-particle creation operators 
operating on the quasi-particle vacuum. For an even-A nucleus, the ground 
state is the quasi-vacuum state, i.e., a state where all shell model particles 
are coupled in pairs to zero angular momentum. The excited states are the 
two, four, etc. quasi-particle states, corresponding to two, four, etc. element­
ary excitations. In terms of the shell model particle states, the ground state 
of the even-A nuclei is
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= n n (u, + vjb]m b}_m) i o>, (8)
j m>0

where [0> is the vacuum for a shell model particle, defined as b | 0 > = 0. 
One obtains the one, two, etc. quasi-particle states by operating on 
with quasi-particle creation operators.

2. Energy Spectrum
The ground state energy for even-A nuclei is

(¥% I UG I ^0) + An = U + Ån = U'

j/(g;-A)2+ d2

\ QjA2

2J/(^F^

j

1- ____ £C±_|2

|/(£j-A)2 + Zl2.’

while the energy of a two quasi-particle state is

(Å Å) I I W (j172)) + An = T + | (e7j- A)2 +A2 + |/(%- A)2 + Zl2

= U' + ^1 + £;2,
(10)

where the two quasi-particles have angular momenta jr and j2. From 
Eqs. (9) and (10) it is clear that there is a gap of at least 2 A between the ground 
state and the two quasi-particle states of even nuclei. The ground state of 
odd-A nuclei is a one quasi-particle state, while the excited states are one, 
three, etc. quasi-particle states. Usually the three quasi-particle states are 
quite far removed in energy. Thus the energies of the ground and low ex­
cited states in odd-A nuclei are

(V (j) IHGI ¥ (J)) + An = U' + |/(s, _ 2)3 + J2 - U’ + E,. (11)

where / is the angular momentum of the quasi-particle. Since there are 
several one quasi-particle states in each odd-A isotope, there is no gap like 
that in the even isotopes.

3. Number of Particles
For a state with r quasi-particles, 1, . . r, the expectation value of the 

number operator is
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j

8j Z 8$ — X

|/(ej-2)2+ d2. \Z(et-Å)2+A2

In even-A nuclei, the average number of particles in the ground state is

(!?0|N| !P0) - n -
— L |/(£;-2)2 + A2

(13)

Given the shell model energies in a particular shell, (13) and (6) arc suf­
ficient to determine 2 and A, for a given isotope, which in turn determine 
the ground state wave function and energy. The same values of 2 and 
A are used for the excited states. This insures that those states are orthogonal 
to the ground states, and is expected to be a good approximation for states 
of few quasi-particles, which are the only ones considered in the present 
work. One could adjust 2 and A for higher states. However, in this work, 
the average number of particles dillers from the number N in the ground 
state. For instance, in a state with two quasi-particles of angular momentum 
k, the average number of particles differs from that of the ground state by

(/<, 7<) I ïV I V (k, Å’)) - (^0 IN I Fo) = 2 •
J/(e*-2) 2 + z12

(14)

Although for the lowest quasi-particle states this quantity is small, since 
2 aw ek for the lowest elementary excitations, this variation in average number 
is sometimes nearly two for the distant two quasi-particle states. On the other 
hand, the error in the energy value of the slate is not expected to be large 
since the solutions of I1G are stationary with respect to a variation in n. 
Still, a basic assumption of this work is that the excited states vary smoothly 
and slowly from isotope to isotope.

For the odd-A isotopes Eq. (13) is also used. In this case, the error 
in the average number of particles is small for the lowest states and unim­
portant in determining energy eigenvalues for the high one quasi-particle 
states for the same reason.

4. Accuracy of the Solutions
For a degenerate level, the Bardeen solutions give energies which are 

correct to order when compared to the exact solutions with the pairing 
force. In other words, the energies are good to order G/A, since A = GQ 
in this case. For a system of non-degenerate levels there is an effective pairing 
degeneracy,
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(15)

which indicates the accuracy. Therefore, even if the state near the Fermi 
surface has a low degeneracy, the solutions can give useful results so long 
as the pairing force scatters sufficiently to other states. One situation in which 
one might expect these solutions to be inaccurate is that in which a nuclear 
shell has a j = 1/2 subshell rather isolated from other levels. Such a situation 
may occur in the region of 50 neutrons. In this case, the solutions might 
be quite inaccurate for two or three isotopes near the point where the gap 
is small.

In addition to the small errors in the calculated energies which have 
been discussed above, the present approximation method introduces a 
characteristic uncertainty which arises directly from the fact that the wave 
functions are not eigenfunctions of the number of nuclear particles. This 
is the introduction of spurious states, and in particular of one spurious 
spin zero two quasi-particle state.8)» 9) Many levels are involved when the 
gap is large, so this spurious state is then distributed over many levels; 
there are, nevertheless, some situations in which one state is almost entirely 
spurious, as is the case in Pb206. One can usually recognize such a situation 
when it occurs.

C. P<2> Force
1. Perturbation Theory

For the long range part of the shell model particle interaction we use 
the last term of (2) as two-bodv P(2) force:

“long range
-5/4rc| / JT P(2) (cos 0y)

“ ij

Z lFF(- 1)^(1) yf/z(2)
j“

5/1 mi 5/2mo ^2,rø2'5/i'mi'»

(16)

where (cos 6) is the Legendre polynomial of order two. The reason 
for this choice of force is that, for nuclei far from a closed shell, it can produce 
permanent quadrupole deformations which are experimentally observed ; 
and for nuclei with or near closed shells, where its effect is weaker, it can 
provide an explanation for the observed quadrupole vibrational spectra. 
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Even for s.c.s. nuclei, which we consider, the long range interaction between 
the outside nucleons and the closed shell core plays an important role. 
However, we shall take the PW force acting only among the outside nucleons, 
and assume that the effect of the core can be included as a quadrupole 
force and charge renormalization for the outside particles.

For the perturbation treatment to follow, the radial dependence of the 
force is of less importance than the angular dependence given by P® (cos 0). 
In a j shell, for example, the energy spectrum is given entirely by the 
angular dependence of the force. For the evaluation of the matrix elements, 
we use the radial dependence r^rj, as this is simply connected with the 
quadrupole field description of §II.C2. This is the force, r?rJP<2) (cos 0), 
which is diagonal in the U (3) coupling scheme of Elliott.5) For the 
evaluation of the radial matrix elements, harmonic oscillator wave func­
tions are used.

If it is sufficiently weak, the P<2) force may be treated as a perturbation 
to the pairing force calculation. For this purpose, it is convenient to expand 
the force (16) in terms of creation and annihilation operators for quasi­
particles :

«long range " | Z {¥o«<2> + W2) + 1’n'2’ + %o<2> + $31<2> + ^(2)}. (1?)

where, as in Belyaev, the subscripts refer to the number of creation and 
annihilation operators, respectively. The general form of the terms is given 
by Belyaev10). In first order perturbation theory, only ^u(2) and ^?22<2> 
contribute to the relative level spacing. The effect of is to add to the 
energy of a quasi-particle of angular momentum j an amount

h

(18)

where the “C”-symbol is a Clebsch-Gordan coefficient.
For the perturbation to have no ellect on the number of particles in the 

ground state, to first order in the coupling constant /, the chemical potential 
must be shifted simultaneously by an amount

<j|r2|ji>2
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This causes an additional shift in energy for a quasi-particle of angular 
momentum j of an amount

A Ej = - AÅ(Uf-Vf). (20)

If G ((A, the inclusion of this contribution is equivalent to the readjust­
ment of the F’s and V’s so as to satisfy (6) and (13) with the inclusion 
of P® to first order in /, thus leaving the quasi-particles independent 
except for the interaction part of the Hamiltonian, ^B40(2) + ^3i(2) + ^22<2)- 
This contribution due to A/. is unimportant except for quasi-particles far 
from the Fermi surface.

2. Collective Coordinates
It is easily seen from the experimental data on transition rates and 

excitation energies that this perturbation treatment of the long range force is 
not adequate for all states of most of the isotopes considered. First, the large

The term $22(2) has no effect on zero or one quasi-particle states, but 
for two quasi-particle states it splits the energy according to the total angular 
momentum, J, to which the two quasi-particles are coupled, thus breaking 
the degeneracy of the pairing Hamiltonian. For two quasi-particles of 
angular momentum j\ and j2 coupled to J, the energy shift is

where “W” is a Racah coefficient.
The first two terms on the right, which have the J dependence of the direct 

and exchange part of two shell model particles interacting with a P® force, 
arise from the normal interaction of the hole and particle part of the two 
quasi-particles with each other, the U, V factor expressing the fact that a hole 
and a particle interact with opposite sign from two particles or two holes. 
The third term, which only affects J = 2 states, arises from the mutual 
annihilation of the hole and particle parts of the quasi-particles and their 
subsequent creation through the P(2) force.
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B(E2) values for the deexcitation from the first excited 2 + state of even nuclei 
to the ()+ ground state make it impossible to explain this state as a two 
quasi-particle state perturbed by a P<2> force. The pairing correlations 
may introduce some enhancement of the values above a “single­
particle” estimate, but in all cases they introduce less enhancement than 
that indicated by the collective treatment which follows. One finds, in 
the case of Pb206, that the enhancement predicted by the collective treatment 
is 2.4 times that of the two quasi-particle 2+ state with the largest enhance­
ment. For Pb206, where the effective charge (see Eq. (34)) is known from 
experiments in Pb207, the transition rate agrees better with the collective 
B(E2) than with the quasi-particle value. Thus, even though the collective 
approach may be least accurate in the Pb case, it may still be more accurate 
than the perturbation approach. In all other cases, the collective treatment 
increases the enhancement over that produced by pairing correlations 
alone by larger factors: a factor of about six for the Sn isotopes and about 
four for the Ni isotopes, for example. In these cases, the effective charge 
is not known from experiments analogous to those on Pb207, but the collec­
tive treatment agrees with experimental transition rates for effective charges 
of about the magnitude of that in Pb207, while larger effective charges would 
have to be used to obtain a fast enough decay from a perturbation treat­
ment.

Second, the lowest 2+ state is well below the two quasi-particle states 
produced by a pairing force of such strength as to be consistent with other 
data, this lowering also being the smallest in the case of the Pb isotopes. 
Since this 2+ state must be constructed from the quasi-particle states, 
and is far separated from them in energy and of a different character from 
them, a non-perturbation treatment is necessary for this state.

We assume with Belyaev that we can define a collective parameter, 
Q, the quadrupole field or the total nuclear quadrupole moment, and that 
the main effect of the long range force can be described as an interaction 
of each particle with that field. Then,

1
(22)

where Qfl, the quadrupole moment operator, is given by

0 = y 2 + y q^çUv Uvf Vvyy (at + ßt,ßvy

+ y Qvv' ( v' + Vv Uv') (aî ßv' + ßv a/) ’
(23)

w'
Mat.Fys.Medd.Dan.Vid. Selsk. 32, no. 9. 2
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and
<■' = <r|r2Y2|/> with v=jm. (24)

Using harmonic oscillator wave functions, we have the selection rules that 
the parity of v is the same as of v' and

I <2. (25)

We shall also require the condition of self-consistency: that the quadrupole 
moment of the outside nucleons associated with the Y2 degree of freedom
be equal to Q„. For this purpose we use a Lagrangian 
auxiliary Hamiltonian

r [å and the

^pairing 2^^*^ (26)

where, for simplicity, we have dropped the subscript // and consider for 
the moment only the contribution to the energy of the Yq quadrupole 
degree of freedom. To obtain the ground state energy of H we follow a 
method suggested by A. Bohr which is equivalent, within the approxima­
tions used, to that of Belyaev. If the quadrupole moment is not too large, 
the intrinsic ground state wave functions for (26) for cven-A nuclei can be 
written in perturbation theory

11, is then fixed by the self-consistency conditionThe Lagrangian multiplier

(28)

Ey + Ey’

vv'

The ground state energy may then be calculated as a function of Q as

(¥'(Q)|H|¥'(Q)) = ir + {

- U' +1 CQ2,
(29)

defining the restoring force parameter C. The rotationally invariant collective 
Hamiltonian, utilizing the five quadrupole degrees of freedom asso­
ciated with a Y2 deformation, is then given by
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«en - V + i C £($-<■ ± BZ <%, (30)

where the inertial parameter B is calculated in adiabatic perturbation 
theory to be12)

When quantized, the Hamiltonian (30) will lead to the spectrum associated 
with the harmonic qadrupole surface oscillations, the quanta being phonons 
of spin 2. With this description of the lowest 2+ state, its properties can easily 
be obtained. The energy 0+-2+ is given by

rzco = ^C/B. (32)

The ground state energy shift due to the P<2> force is obtained from the 
zero point energy

J Eo = I h M (%) -1 11M (% = °) • (33)

Assuming the 2+ state to contain the entire quadrupole matrix element 
with the ground state, the B(E2) value for excitation of the 2+ from the 
()+ ground state is given by

(34)

where ceff is the effective charge of the extra-core nucleons. The effective 
charge of a nucleon is its own charge plus an additional positive charge 
arising from the fact that the extra-core nucleons can polarize the proton 
core to some extent. Experiments indicate that the effective charge of neutrons 
in Pb207 is about unity13). In oxygen the proton core deformability seems 
to be somewhat less14). For our calculations we take the effective charge 
of a neutron to be unity and of a proton to be two. The factor 5 occurs 
since the five quadrupole degrees of freedom contribute equally.

For the validity of this collective treatment of the P(2) force two con­
ditions are required. First, the amplitude of the collective zero point oscil­
lation, ()ave, of the quadrupole moment Q must be large enough compared 

2*  
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to the fluctuations, ÔQ, of the quadrupole moment of the intrinsic state for 
the validity of Eq. (22). Second, the amplitude of collective oscillation must 
be small enough that the lowest order perturbation theory expression for 
(27) be sufficient. For the first condition it is required that

This savs roughly that the 2+ level must lie well below the quasi-particle 
excitation energies, the same condition which is required for the adiabatic 
perturbation calculation of the inertial parameter li to be valid. In practice, 
this condition seems to be satisfied for the first 2 1 level in the s.c.s. nuclei 
considered, but in all cases the 0+, 2+, 4+, second excited state lies near 
the to]) of or above the gap. Another way of stating condition (35) is that the 
collective state must collect a sufficient part of the total oscillator strength; 
i.e., that the collective B(E2) be greater than the sum of the B(£'2)’s for 
the various two quasi-particle 2+ states. The second condition is a measure 
of the degree to which the collective oscillation is really harmonic. Although 
these conditions seem quite restrictive at first sight, in certain cases, at least, 
they are not. For one degenerate level of degeneracy 2.Q, the collective 
oscillation has been shown to be harmonic and correctly described by the 
above treatment9) as long as the coupling parameter is not so large that 
one is too near the transition point at which a stable equilibrium deforma­
tion occurs. Thus, in this model, the only errors in the collective treatment 
are of order even though the 2+ state lies just below or far below the 
quasi-particle excitations. In this work, the collective properties of s.c.s. 
even nuclei are described by the above method. This affects mainly the 
total binding energy and properties of the 2+ first excited state. For the other 
states, this effect of the P® force on the excitation energies is estimated 
by first order perturbation theory, using the quasi-particle states given by 
the pairing force. This is not expected to describe correctly the splitting 
of the quasi-particle levels, since there may be other equally important 
effects from other components of the force which are not included in this 
calculation.

In the case of s.c.s. odd-A nuclei, one also expects that there should be 
collective electromagnetic transitions and that a perturbation treatment of 
the P<2) force is not adequate in all cases. Thus we use a collective treatment,
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analogous to that above, for the effect of the P<2> force on the one quasi­
particle levels of these nuclei, corresponding to the coupling of the quasi­
particle to the collective oscillation. The intrinsic wave function in this case is

(36)

(37)
w'Qw'^v^v' 2

Çp'j/'( + V,/ Pj,") t pt t \TJ

EV'+EV"

The quadrupole moment is given by

(^(Q)IQI^(Q)) 

q2v^(Uv^ + Vv-Uv^2
Ev-+Ev- 1

where the first term is the single-particle quadrupole moment of the quasi­
particle. Ignoring the restriction on the v" sum, we may associate the second 
term with the collective quadrupole moment Q of the corresponding even 
system (cf. Eq. (28)). This approximation should be good to the extent 
that there are large numbers of states contributing to the sum. The Hamil­
tonian for the intrinsic state as a function of Q contains non-diagonal as 
well as diagonal terms in the one quasi-particle state and may be written

H-t7'+|cO2+^'£,(«î«, + Âft)
- y

“ X Qvv' ( L'v v' Vv ^p') (^p ^v' ßv' ßv) 0 ’ 
vv’

(38)

the two terms in addition to those of (29) being the quasi-particle energy 
and the cross term from 1/2 z(Q + Qs.p.)2- Assuming Q))Qs.p.’ we have 
dropped the term quadratic in Qs . In the collective Hamiltonian we 
utilize the five quadrupole degrees of freedom Q to produce the rotationally 
invariant expression

«oon - I C2' oj + I +Z Ev (4 «r + Ä A)
Z fl V

+ Z * W uv- M («Î + Ä- ft) (ft,.pp'/z
(39)

C and B are given by (29) and (31), respectively. We thus ignore the differ­
ence in the inertial parameters for neighbouring even-even and odd-A nuclei 
(cf. Ref. 10, (136)).
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This dillers from the Bohr-Mottelson collective Hamiltonian for a vi­
brator coupled to a single particle by the factor (UVPV'- VrVV') in Hint. 
The effect of this factor is that quasi-particles near the Fermi surface are 
more weakly coupled to the oscillation, while those farther from the Fermi 
surface are coupled more strongly. It also dillers from the Bohr-Mottelson 
collective Hamiltonian in that the pairing energy is included. For simplicity, 
and because the coupling is not too strong for the single closed shell nuclei, 
we have calculated the effect of the last term in (39) by second order pertur­
bation theory. In this case, the low lying one quasi-particle states receive 
an energy shift

The Hamiltonian (39) will also have associated collective slates, but there 
is not yet experimental evidence for these states for s.c.s. odd-A nuclei.

III. Energy Level Systematics
A. The Shell Model Particle Well

'fhe energy levels of the s.c.s. nuclei, Eqs. (9), (10), and (11), are found 
by first calculating the quasi-particle energies, using a numerical solution 
of Eqs. (6) and (13). Next, the collective properties arc determined as dis­
cussed in § II. C 2 and, finally, PW interactions between quasi-particles 
and their coupling to the vibrations are treated by the perturbation methods 
of § II. In order to proceed with such a calculation one must know 
the single-particle energies for a shell model particle moving in the effective 
well for one particle outside of a double closed shell, and must also know 
how these levels shift with A as one proceeds through the nuclear region.

When the levels of the one particle outside of the closed shell are not 
known, there is some uncertainty added to the calculation. There are some 
theoretical calculations for the level positions based on effective potentials 
with a few parameters, from which one has some knowledge of the well.15)’16) 
Also, there are experimental energy level results from nuclei other than the 
s.c.s. nuclei treated in this work, which can be used to determine the single­
particle energy levels in a particular region. If we wish to find, say, the single 
neutron levels for a region with a closed proton shell, we look at the energy 
levels of isotopes with one neutron and even numbers of protons outside 
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of the closed shells. For regions with large enough proton numbers, such 
that the neutrons and protons are filling dillerent orbits (Z^28), the short 
range interaction between the protons and neutrons is small (it is zero for 
our pairing force unless the particles are in the same levels). Therefore, 
it is reasonable to calculate the effect of the even numbers of protons on the 
odd neutron as a long range force for which an intermediate coupling 
phonon calculation can be used. Such calculations have had some qualita­
tive success for heavy nuclei,17) although it is not certain that such a simple 
treatment of the effect of the neutrons and the protons on each other is quan­
titatively correct. We have made only crude use of this method, with the 
hope of gaining some knowledge of the single-particle levels in a particular 
region, working backward from the known experimental levels to try to 
find the values of the single-particle levels which are consistent with the 
experimental data. In this work, both of these methods have been used to 
determine the single-particle levels. However, the lack of experimental data 
and single-particle levels is a major uncertainty in this work.

The rate and manner in which the single-particle states shift with A 
are difficult to establish. However, if the dependence is something like A_1/3, 
then our results are very little affected by this motion in most regions. In 
none of our s.c.s. regions is there direct evidence that the change in the 
single-particle energies with A affects the accuracy of our calculations, 
particularly in view of the uncertainty in the level positions. Still, there 
is a possibility that, when the number of particles changes as much as it 
does in, say, the Sn region, there are systematic deviations introduced. 
The change in the single-particle levels with A does apparently play an 
important role in determining the levels of N = 50. In this work, we have 
not changed the energy level separation of the levels in any one region, 
although we have investigated the variation in the depth of the well in 
the binding energy calculation.

B. The Choice of Parameters}

Once the single-particle well with its energy levels has been established 
for a given closed shell region, the consequences of our model are determined 
in terms of the two coupling parameters G and /. It is well established that 
a short range residual nuclear force is necessary in a description of nuclei. 
The strength of this force, which is simulated in our calculation by the 
pairing force with its coupling parameter G, can be determined in many 
ways. For example, the systematic experimental odd-even mass difference 
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discussed in the next section is affected very little by the long range force, 
and can thus be used to determine G to about 3O°/o in most regions. Closely 
related to this is the so-called energy gap of even-even nuclei.18) In heavy 
highly deformed nuclei, this shows up in the fact that the first intrinsic 
excited state of an even-even nucleus usually lies above 1 Alev, while very 
low intrinsic excitations often occur in the neighbouring odd-A nuclei. In 
the case of the spherically symmetric s.c.s. even-A nuclei which we consider, 
there is also an energy gap in which only the collective 2+ level occurs. 
The position in energy of the two quasi-particle excited states, which lie 
at or above the top of the gap, depends strongly upon the strength of the 
coupling parameter G. In cases where an experimentally observed excited 
state can be uniquely associated with a two quasi-particle excitation, one 
can make an independent estimate of G. Such a situation occurs in the case 
of observed states of high spin, J, and odd parity. First, the two quasi­
particles forming such a state must have opposite parity. In each mass 
region considered there is always just one single-particle state of parity 
opposite from the rest, and this must be the /-state of one of the quasi-particles. 
The high J value of the excited state can then determine rather uniquely 
which is the second quasi-particle. The 9~ levels in Pb204 and Ph202 and the 
7“ level in Sn120 permit such a determination to be made. This leads to 
a value of G between 23/A and 30/A for Pb and about 19/A for Sn. The 
P<2> force is included as a perturbation in this determination.

Once the value of G has been determined, the coupling parameter / 
of the long range part of the force may be determined from the quantities 
it most affects, namely the position of the first 2 + states of the even-A 
nuclei and the B(E2} value for the (0 + ->2 + ) transition. For any one isotope 
the experimental excitation energy can be fit with the theoretical value 
by an appropriate choice of /, a larger G requiring a correspondingly larger 
/. However, we require that in any one mass region (corresponding to 
a particular double closed shell with one kind of particles outside) one 
value of Gand / or rather X (cf. below, Eq. (41)) be used for all the isotopes. 
With this requirement, one can determine the G and / which together give 
the best fit to the position of the first excited 2+ level as a function of Z 
or N in an entire mass region. Where good comparison can be made, the 
G determined this way is in agreement with that determined by the pre­
vious methods.

Although the B(E2) value depends strongly on /, it also contains a 
factor Cgff which may vary somewhat from shell to shell. Thus, except 
in the case of the Pb isotopes for which ceff is independently determined 
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from E2 transition rates in Pb207, one can determine eef£ only from the 
B(E2) values and, assuming ce(f to be constant in one mass region, see 
whether the variation from isotope to isotope is consistent with experiment. 
The G and / determined for Pb from the B(E2~) value of Pb206 are con­
sistent with the values determined from the previous methods.

Although we did not try to determine uniquely the best values for G 
and /, it is seen that both have a simple and smooth A dependence in going 
from region to region. G varies more or less as A-1, the value 19A-1 Mev 
being better for the regions from N = 28 to Sn, and G = 23A-1 being better 
for N = 82 and Pb. The corresponding value of / in going from region to 
region varies more or less as A-7'3 is expected (cf. Ref. 10, (93)). We 
consider instead the quantity X defined by 

(41)

where M is the nucleon mass, 7îco0 = 41 A_1/3 Mev, n is the total number 
of oscillator quanta associated with most of the single-particle (harmonic 
oscillator wave functions) states in the region in question. That is n = 3 
for the N = 28, Ni, and N = 50 regions; n = 4 for the Sn and A7" = 82 regions, 
and n = 5 for the Pb. For the calculations, X was considered as a fixed 
constant in each region and /lco0 was defined in each region in terms of a 
representative value of the mass number A. This quantity was then found 
to have a value of about A = 110A-1 in each of the regions considered. 
The actual parameters used will be indicated with the theoretical results.

C. Energy Levels in S.C.S. Nuclei

In this section and in the Appendix, we shall present figures and tables 
from which the reader may estimate the position of all of the calculated 
zero, one, and two quasi-particle states and the collective 2+ state, and 
from which he may determine the calculated wave functions. In the case 
of Pb206 and Pb204, all of the calculated levels will be explicitly shown to 
indicate how the two quasi-particle states labelled by their spins, j and 
j', and parity are broken up by the force according to the total angular 
momentum J of the resulting state. For other even-A nuclei only those 
excited states, aside from the collective 2+ state, which correspond to two 
identical quasi-particles will be indicated, and the breakup of the degeneracy 
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by P(2) obtainable from (18)—(21) will not be shown. From such a figure, 
the positions of the other excited states corresponding to two different 
quasi-particles can be obtained, aside from the effect of P<2>, as the mid­
point between the two excited states corresponding to pairs of quasi-particles 
of the two types (cf. Eq. (10)). This procedure is indicated in the ligures for 
Pb206 and Pb204. For the odd-A isotopes all of the one quasi-particle states 
are indicated. These are each non-degenerate levels aside from the m 
degeneracy of the quasi-particle angular momentum, J = j.

1. Pb Isotopes
The energy levels in Pb207 define the neutron hole well quite accurately. 

Since the experimental single-particle levels are known for the entire 82—126 
neutron shell, this region should be a good one for our methods.

One also knows the positions of some of the particle levels in the next 
shell from Pb207. Since these are unimportant in Pb206, and grow even 
less important as the number of neutron holes in the 126 shell is increased, 
they serve only to renormalize G in our calculation.

The one disadvantageous feature for the Pb isotopes is that the first 
hole level has spin 1/2. For this reason, in the two-hole calculation, Pb206, 
the lowest excited state is one with two quasi-particles of angular momentum 
1/2, which is simply a 0+ state. For reasonable magnitudes of G, this state 
seems to be almost entirely spurious, and must therefore be ignored.

In the odd-A Pb isotopes the main systematic experimental feature is 
the position of the i13/2 state, which has been determined by a study of the 
M4 isomeric transition to the f5/2 state.19* For any reasonable strength of 
the pairing force, G, we obtain the correct position for this level. It is 
generally true that, although the absolute energies depend on the size of G 
in odd-A nuclei, the relative positions of the one quasi-particle levels are not 
very sensitive to the strength of the pairing force or the P(2) force, but depend 
mainly on the positions of the single-particle levels for any G which is 
consistent with the gap.

All of the experimental odd-A Pb ground states are found within 0.1 
Mev, as can be seen in Fig. 1. In Pb205, the theoretical (1/2)-state is below' 
the (5/2)_ state by about 0.05 Mev, while experiment gives the ground 
state spin as (5/2)—,20> ; and the (5/2)“ state might rise a little fast, since it 
is above the (3/2)“ state by about 0.1 Mev in Pb197, while rather uncertain 
experimental results give (5/2)“ as the ground state spin. Such small devi­
ations can easily be explained by the uncertainties expected in the cal­
culations, especially by the presence of other perturbations besides the P<2).
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Fig. 1. Energy levels of the odd-A Pb isotopes.
The experimental points are large dots with spin and parity assignments placed on the right 
when known. The theoretical results are the small dots joined by solid lines giving the positions 
of the one quasi-particle states for G = 23/A and X = 0.4. The effect of the coupling of the 
quasi-particle to the collective oscillation is included by Eq. (40) for the lowest few states. 
The labels on the experimental curves are the angular momenta of the one quasi-particle states. 
The experimental values are taken from Bergstrom and Andersson,19) the table of Strominger, 
Hollander and Seaborg, and the work of Dzelepow and Peker21).
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Above about 0.8 Mev a number of other states are arising from the 
phonons which have not been indicated in the figure. We seem to predict a 
(3/2)“ ground state in Pb195 and the presence of low lying (3/2)“ and (1/2)“ 
states in Pb203 and Pb201.

In the even-A Pb isotopes the position of the 2“ level is known down 
to Pb200. Using G «^0.1 Mev, this energy level is predicted quite well as 
the lowest two quasi-particle level which can give rise to a 2+ level. However, 
the B(E2) for this state in Pb206 is four times the single-particle value22), 
suggesting that the intrinsic states lie somewhat higher and that the 2+ state 
is collective. The position of the 2+ level as a function of A and the value 
of the B (E2) in Pb206 are accurately predicted. (Cf. § VII). However, 
of all of the s.c.s. nuclei, perhaps in Pb is the collective treatment of the 
2+ state least well justified. The 2+ level and the levels corresponding 
to two identical quasi-particles appear together with some of the experi­
mental levels in Fig. 2. Fig. 3 shows how the calculated levels vary as a 
function of G.

The positions of all of the zero and two-quasi-parlicle levels are shown 
in Figs. 4 and 5 for Pb206 and Pb204, together with the experimental values. 
The agreement with experiment for Pb206 is, as expected, not as good as 
the results of True and Ford.13) However, all of the experimental levels 
with measured spins can be matched with quasi-particle levels to within 
a few tenths of one Mev, except for the lowest 2+ level for which the collective 
treatment gives the correct energy. It must be pointed out that our treatment, 
which introduces the collective 2+ level and retains as higher excited states 
all of the J = 2 two quasi-particle states as effected by P<2) in perturbation 
theory, contains a spurious 2+ two quasi-particle state analogous to the 
spurious ()+ two quasi-particle state of the Belyaev solution of the pairing 
Hamiltonian. Thus, in Figures 4 and 5, there is one extra 0+ and one extra 
2+ state. In our case as in that of Ref. 13, the ground state of Pb206 is mostly 
(Pi/2)2 = 0 so that the state composed of two p1/2 quasi-particles is mostly
spurious, the other two quasi-particle spin zero states being mostly real. 
On the other hand, the lowest 2+ state of Ref. 13 and likewise our collective 
2+ state have large contributions from (p1/2 /à/2) an(i (Pi/2 P312) an(l lesser 
contributions from several other configurations, so that, with our method of 
calculating, the spurious character is spread over several of the low lying 
2+ two quasi-particle states.

For G = 0.128 which is chosen so as to fit the position of the 9“ level 
in Pb 204, and which is consistent with the data for Pb206, one predicts the 
energy of the 9“ level in Pb202 to be 2.09 as compared with the experimental
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Fig. 2. Energy levels of even-A Pb isotopes.
The experimental points are large dots with spin and parity assignments placed on the right 
when known. The theoretical points are indicated by small dots. Those theoretical points which 
are joined by solid lines are the two identical quasi-particle states for G = 23/A and are labelled 
to the left by the angular momenta of the quasi-particles. The effect of the force is not 
included for these states. The other two quasi-particle energies are found by taking the average 
energy between the appropriate two levels (see Figures 4 and 5). The collective 2+ theoretical 
level is shown by small dots joined by a dashed line. The experimental values are taken from 
the table of Strominger, Hollander and Seaborg and the work of Dzelepow and Pf.ker21). 
X = 0.4.
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Fig. 3. Theoretical energy levels in even- and odd-A Pb isotopes as a function of G.
The notation is that of Figs. 1 and 2. Only the zero and two identical quasi-particle states 
are given for the even-A isotopes and the one quasi-particle states for the odd-A isotopes. The 
solid lines are for G = 0.0911 and the dashed line for G = 0.145.



Nr. 9 31

2,0

1,0

Q Op­

value of 2.171. The long lifetime of this level shows that it must lie 
the near lying 6“, 7“, and 8” levels. The P^ f°rce puts the 9“ 
these other states coming from (/g/2 z13/2)> but the (p1/2 ^13/2) b » 
particle states lie well below the 9~ in Ph206, close in Pb204, and

below 
below 
quasi- 
above



32 Nr. 9

206Pb Angular momentum
Fig. 4. Energy levels of Pb206.

The experimental levels, taken from True and Ford13), are given on the right for each spin. 
On the left for each spin for G = 0.128 is the two quasi-particle state perturbed by anq 
Eq. (20) (see text), the labelled unperturbed states being given to the left of the diagram. 
The second column for each spin also includes the effect of The lowest 2+ level, marked 
[2+], is the collective level. The state (-Pj/2^J = o 's mostly spurious and there is one spurious 
state among the low lying 2+ quasi-particle states. The effect is omitted in the highest states. 
X = 0.4.

in Pb202. Thus, we can understand why this long-lived 9 state is seen in 
Pb202, and Pb204, but not in Pb206.

2. Sn Isotopes
In the odd-A Sn isotopes nine ground states are known. In addition, sys­

tematic information about the (11/2)“-(3/2)+ separation is obtained from 
the isomeric MI transition, and several excited states are known in Sn117.
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Fig. 5. Energy levels of Pb20i.
The notation is the same as in Fig. 4. The spurious character is spread over several of the low 
lying 0+ states in this case.

Of course, Sn101 is far from the stability curve, so the single-particle well 
cannot be obtained directly from experiment. One can learn something 
about the (11/2)--(3/2)+ separation from the isotopes with 81 neutrons 
and even numbers of protons (52Teg?3, 54XeJ35, 56Bag37, and 58Cegi9). How­
ever, one has a hard time to place the (l/2)+ state correctly with respect 
to these two states and the separation between the 5/2, 7/2 states and the 
1/2, 3/2, 11/2 states is not known very well.

We tried calculations with several values of the single-particle energies. 
Although it is possible to choose a well which gives better results, the results 
using the well of S. G. Nilsson11) are presented in Fig. 6. All of the 
important features which are known experimentally fit well (to about 
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Fig. 6. Energy levels of the odd-A Sn isotopes.
The notation is the same as in Fig. 1, with G = 19/A and A’ =1.1. The single-particle levels 
are taken as /5/2(0); ff7/2(0.22); S1/2(1.9); d3/2(2.20); h11/2 (2.8 Mev).

0.1 Mev). One should notice that the 1/2 state remains the ground state as 
A changes by six. This feature depends not only upon the pairing force, 
but also upon the P<2> force. Also the P® force is important for keeping 
(3/2)+ the ground state spin in Sn 123 and 125, for without it the (11/2)- 
would be the ground state, contrary to experiment.

For the even-A Sn isotopes shown in Fig. 7 the 7” state in Sn120, coming 
almost entirely from the two-quasi-particle state with one (11/2)“ and
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Fig. 7. Energy levels of the even-A Sn isotopes.
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The notation is the same as in Fig. 2, with G = 19/A and X = 1.1 ; and the single-particle energies 
are given in Fig. 6.

3*
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one (3/2)+ quasi-particle, is moved little by the long range force. It is lit 
quite well by G = 0.187, corresponding to 0.0911 in Pb (G = 19/A). The 
6+ state from two (ll/2)~ quasi-particles is also fit well, falling about 
0.1 Mev below the 7“ level when ^3^ and are included by (18), (19), 
and (20).

However, the important experimental results for the even-A Sn isotopes 
arc the 2+ states. There is a maximum in the 2 + —0+ energy separation 
at Sn114.23) This feature is fit in quite good detail by the collective state 
which occurs for the G = 0.187. In this case, the higher values of G will 
give rise to collective 2+ states which will not lit the experimental values 
very well. Thus the combination of the 7~ and 6+ states in Sn120 and the 
detailed experimental results for the 2+ state serve to pick the value of G 
accurately as 19/A.

3. Ni Isotopes
Since the levels in Ni57 are not known we must again use indirect evidence 

to lind the well. For the neutrons moving in the 28—50 shell, the p^— p1/2 
separation is known rather well from the magnitude of the spin orbit inter­
action. One needs to know, in addition, the position of the (9/2)+ and 
the (5/2)“ levels with respect to the p levels.

The (9/2)+—(l/2)~ separation can be estimated from the isotopes with 
49 neutrons and even numbers of protons. The pairing-force calculation 
is insensitive to this, since the (9/2)+ state does not play a very important 
role in the Xi isotopes. However, the position of the (5/2)“ level is quite 
important. Fig. 8 shows a sample calculation of how the levels in 26^e29 
can give some information about this level. However the well of S. G. 
Nilsson16) seems adequate for these isotopes, in spite of the apparent 
inconsistency of the (9/2)+-(1/2)- separation with experimental data.

Choosing the energy levels for the neutrons from ref. 13, we carry 
out the pairing force plus P<2) calculation. The results are shown in Figs. 9 
and 10. The calculated ground state spins in the odd-A isotopes all agree 
with experiment to within 0.1 Mev. The motion of the 2+ first excited state 
in the even-A Xi isotopes is best fit by the G = 19/A.

4. N = 82
There are experimental results for isotopes with 82 neutrons, for protons 

in the 50—82 shell from 52Te134 to 64G(1146. For all these isotopes, most of
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Fig. 8. Energy levels of 20^99-
K is the strength of the coupling of the single-neutron states to the collective proton vibration. 
At K = 0, one has the assumed single-particle levels plus a phonon at 1.5 Mev. For K = Ko, the 
value of K is estimated from .?6Fe.^|, O6Fe3((J, and ogNi^, the results are compared to the exper­
imental values for Fe , which are given as large dots with energies to the right. The p3/., + 
phonon state which is given in the figure is the one with J = 1/2.

the extra-core protons are in the (7/2)+ and (5/2)“ levels. Therefore, only 
the separation of these levels need be known very well, especially since 
the 1/2, 3/2, 11/2 states are well separated from these levels. We use a 
separation of 1 Mev for the protons between the (5/2)+ and (7/2)+ states, 
which seems to be consistent with the levels in 5iSb72 and 51Sb74. The 
three higher states are taken as one state of pair degeneracy nine at 
2.0 Mev.
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Fig. 9. Energy levels of odd-A Ni isotopes.
The notation is the same as in Fig. 1 with G = 19/A and X = 1.85. The single-particle energy 
levels are

P3/2<°); /5/2<°-73); Pi^1-56)’ and 09/2<4-52 Mev>-
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Fig. 10. Energy levels of even-A Ni isotopes.
The notation is the same as in Fig. 2 with G = 19/A, X = 1.85, and the single-particle levels 
of Fig. 9.

• •o. •o + •o + • — o +
56 56 60 62 64 66

Ni Ni Ni Ni Ni Ni

Figs. 11 and 12 give the result of this calculation. For the odd-A nuclei 
the ground states are correctly determined, as are the only two excited levels 
whose spins are known, the 0.163 Mev, (5/2)+ level in La139 and the 0.145 
Mev, (7/2)+ level in Pr141.

In the even-A nuclei one finds that the 2+ collective levels are well 
determined for G = 23/A.
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Fig. 11. Energy levels of odd-A isotopes for N = 82.
The notation is the same as in Fig. 1. See the text for the discussion of the well. G = 23/A and 
X = 0.975.

5. N = 50
The region with a closed shell of neutrons and various numbers of 

protons in the 28—50 shell is a poor one for our calculation for several 
reasons. The first difficulty is that of finding the proper well for one proton 
outside of the double closed shell, i.e., 29CugQ. But just as important in 
this case seems to be the fact that the percentage change in A is so great 
before one is at the isotopes for which there is empirical information that 
the well seems to have changed quite a bit.
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The notation is the same as in Fig. 2. See the text for the discussion of the well. G = 23/A and 
X = 0.975.

Another characteristic of this region is that the Z’s of the stähle isotopes 
are just at the values for which the p1/2 level is being filled. From the 
information we have, this level is rather separated from the other levels
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Fig. 13. Energy levels of odd-A isotopes for N = 50.
The notation is the same as in Fig. 1. G = 26/A, X = 1.22, and the single-particle energy levels are 

z5/2(0); p3/2<0-6); pi/2(L8); ff9/2 (3-4 Mev)-

of the shell. As explained in § 11, such a situation can result in the Bardeen 
solution to the pairing force being very inaccurate.

A one-plionon intermediate coupling calculation is done, using the Cu 
levels to find the proton well in the same way as Fe55 is used to find the 
neutron well. This places the p3/2, f5/2, Pi/2 states in roughly the same posi­
tions for the single proton as the corresponding neutron states in the same
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Fig. 14. Energy levels of even-A isotopes for N = 50.
The notation is the same as in Fig. 2 with G, X, and the well as in Fig. 13.

shell. One finds the Zö/2 state of the order of 1 Mev above the p3/2 state. 
If this is the well for the protons, it is impossible to obtain the experimental 
(3/2)“ ground states in 35Br8° and 37Rb87 with reasonable values of the 
G and / parameters.
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ev

Fig. 15. Energy levels of odd-A isotopes for N = 28.
The notation is the same as in Fig. 1. G = 19/A, X = 3.06, and the single-particle levels are 

d3/2’ <°); /7/2> (2-5)’ Ps/2’ <5-57); /5/2’ <6-54 Mev>-

On the other hand, it is true that for the N = 50 isotopes the values 
of A are considerably larger than for the Cu isotopes used to determine the 
proton well. As one increases A, the spin orbit force decreases. It is possible
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Fig. 16. Energy levels of even-A isotopes for N = 28.
The notation is the same as in Fig. 2 with G, X, and the well as in Fig. 15.

that the an(l P3/2~/?i/2 separations have decreased so much as
one goes from 63 to 85 that the (5/2)~ state has come below the (3/2)_ 
state. If one takes such a well, with a level ordering of f5/2, p3/2, p1/2, g^z, 
it is possible to fit all of the odd-A N = 50 ground states as well as the known
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Fig. 17. Exact diagonalization of pairing force for particles moving in a j = 7/2 shell compared 
with the experimental levels of the N = 28 isotopes.

The experimental levels are indicated by dots with spin and parity assignments to the right 
and the theoretical levels by lines with the resultant angular momentum shown to the left of 
the line.

excited state information, within the accuracy of these methods, if the 
(9/2)+-(l/2)~ separation is taken to be about 2.0 Mev and with G = 26/A. 
(Cf. Fig. 13).

For the even-A nuclei shown in Fig. 14 the most interesting feature 
is the low ()+ excited state in 40ZrgQ. From our calculation we obtain a 
state of two quasi-particles of spin 1/2 about at this position for G = 23/A. 
As this state must be 0+, this is a possible explanation for the experi­
mental state. However, the slate might be quite spurious, in which case 
the real lowest ()+ excited state would be somewhat higher in energy for the 
same G. The (9/2)+—(1/2)- separation is critical in determining how spuri­
ous this state is. With only the levels in Sr88 and Zr90 it is difficult to draw 
much more information from these isotopes. Incidentally, if the 0+ state 
is really associated with the two quasi-particle state, we would expect a
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Fig. 18. Same as Fig. 17 except that in this case the force diagonalized is the sum of a pair­
ing force plus a force of such relative strengths that the 0+ — 2 separation of the even iso­
topes is produced by the combined results of the two parts of the force, the pairing force 
contributing two thirds and the P^ force contributing one third to the separation.

()+ state to lie near the 2+ 1.85 Mev state in Sr88. The most significant 
manner in which our Zr90 results diller from previous detailed calculations24) 
is that the f5/2, and especially the p3/2, configurations are admixed, and seem 
to contribute to the low energy spectrum.

The results for both even-A and odd-A isotopes are quite sensitive to 
the choice of the single-particle levels in this region, and the results shown 
in Fig. 13 have been obtained only after several calculations with rather 
wide freedom in the choice of the single-particle values.

6. N = 28
Although 21Sc2| experiments give the proton well for neutrons in a 

closed shell of 28, the region is still not a good one for our calculation. 
The small degeneracy of the levels in this region, i.e., Peff ~ 4, leads to 
poor Bardeen solutions. The results of the calculation with a G = 19/A
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Fig. 19. Same as Figs. 16 and 17, but with a relatively stronger force, the pairing force 
only contributing one third and the P^ contributing two thirds to the 0+~2+ separation of 
the even isotopes.

and P(2) force are given in Figs. 15 and 16. Although the 2+ state is fit pretty 
well as a collective state, the levels in the odd-A isotopes are not well fit. 
If the low lying odd parity excited states in 23V51 and 25Mn53 are to come 
from the single quasi-particle states corresponding to elementary excitations 
to levels in the next shell, such a large long range force perturbation will 
be needed to break down the seniority coupling scheme. Certainly, per­
turbation theory is inadequate for the long range force. The theoretical 
(3/2)+ state listed in Fig. 15 is the one quasi-particle state associated 
with the d3/2 level in the shell below.

We also performed an exact diagonalization of the pairing force plus 
p(2) force under the assumption of a degenerate f7/2 level. Fig. 17, Fig. 18, 
and Fig. 19 give the results for three different combinations of G and 
all taken to fit the mean position of the 2+ levels in the even-A nuclei. 
From these figures we see that it is possible to fit the experimental data for
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Fig. 20. Coupling parameters.
The coupling parameters used in each mass region are indicated. The vertical lines indicate the 
extent to which the magnitude of the parameters may be determined by fitting the experimental 
data.

the even-A isotopes and the low lying (5/2)“ states in the odd-A isotopes with 
a pairing plus a force. The (3/2)+ state in V51 presumably is associated 
with excitations from the shell below. If the f5/2, p3/2, and p1/2 states from 
the next shell were included, one would obtain somewhat different results, 
and in particular the (3/2)“ state might be lowered.

For regions lighter than N = 28, one would not expect our methods 
Mat.Fys.Medd. Dan.Vid. Selsk. 32, no. 9. 4
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to work very well. In these regions, the protons and neutrons are tilling 
the same levels, so that the short range interaction between protons and 
neutrons becomes important to the extent that the particles in the closed 
shell are excited into the next higher shell. For example, there is evidence 
that the double closed shell of AT = Z = 20 is not strong enough for our 
methods to be very accurate. Moreover, the effective pair degeneracy of 
the well becomes rather small. In conclusion, for the s.c.s. nuclei with 
A >49, we fit the energy level systematics rather well with an approximate 
solution to the pairing plus P® residual force. Only in the N = 50 case 
does the change in the well with A in one region seem to give important 
effects. The two parameters, G and X, which are obtained as likely in each 
region are plotted in Fig. 20. From this it is seen that their A dependence 
is consistent with a volume force. This means that with only two parameters 
the low energy systematics for the intrinsic and 2+ collective states of 
nuclei with one closed shell can be derived approximately.

IV. Total Binding Energies
A. Even-Odd Mass Differences

Assuming that an interacting shell model picture is a good one, the 
binding energies of nuclei can give information about the residual interaction. 
A systematic difference in the binding energies of even-odd and even-even 
nuclei is a direct consequence of the pairing force. The P<2) force, on the 
other hand, produces a ground state energy shift which, though large, has 
very little even-odd structure. Thus, a comparison between the experimental 
odd-even mass differences of the s.c.s. nuclei which we consider and the 
theoretical ground state energy differences between odd- and even-A nuclei 
can be used to help determine the magnitude of the pairing force constant G.

We define the quantities Pn and Pp

Pn(Z, N) = E(Z, N)+E(Z, N-2)-2E(Z, N - 1), (42a)

Pp(Z, N) = E(Z, N) + E(Z-2, N)-2E(Z — 1, N), (42b)

where E(Z, N) is the total binding energy of the nucleus, (Z, .V). We con­
sider Pw for Z closed and Pp for 2V closed. From (30) and (39) we see that, 
aside from the small shift due to the coupling of the quasi-particle to the
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Fig. 21. Even-odd-A mass difference.
The Pn (Z, N) I E (Z, N) + E (Z, N-2)-2E (Z, N-l) and Pp (ZN) = E (Z, N) + E (Z-2, N)_ 
2E (Z-l, N) are experimental quantities.25) The theoretical curves are simply 2EV, twice the 
energy of the lowest lying quasi-particle for the odd-A isotope. Curves a and b correspond 
to G = 19,/A and 23/A, respectively. Curve c (for lead only) corresponds to G = 30/A.

phonons, which we ignore, the odd-even-A difference given by Pn or Pp 
should just equal twice the energy of the odd-A quasi-particle, 2Ej. In Fig. 
21, the lines represent the quantity 2Ej for the ground state for various 
values of the coupling parameter G. The points are the experimental quanti­
ties Pn or Pp.

In each of the six pictured mass regions, the lower curve is the calculated 
mass difference value for G = 19/A, A being the representative mass number 
of the region. The next curve is for G = 23/A, and in the Pb region a third 
curve for G = 30/A is included. The experimental points indicate that the 
data is consistent with the selected G values, but does not very strongly 
choose one over the other. Perhaps in the Pb region the two stronger values 
of G are preferred, while in the N = 28 region the lower value is better. 
This is in agreement with the energy level information discussed in the 
preceding section which indicates a preference for the value G = 23/A in 
the Pb, = 82, and N = 50 regions and the weaker G = 19/A in the other 
regions.

4*
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B. Absolute Binding Energies

In addition to the evidence for the gap, and therefore for the strength 
of the short range part of the residual shell model two-body interaction, 
the total binding energy data can give evidence for the absolute ground 
state energies of nuclei. Although the residual force employed in this work 
is certainly not the true force, it is hoped that in choosing a two-body inter­
action which gives the correct energy level spacing, one obtains the most 
important portions of the nuclear states. In particular, one would like to

0 ---------------------------------------------------------------------

Fig. 22. Energy diagram for non-interacting shell model particles.

be able to calculate the total binding energy of the shell model particles 
outside of the closed shells.

In a particular region let us call the binding energy of the double closed 
shell nucleus IF0. Neglecting the Coulomb effect for the moment, if one adds 
one extra particle (or hole) it experiences an additional binding energy 
of £0 (cf. Fig. 22). The assumptions of this work imply that as more particles 
of the same type are added they fill the well defined by the isotope with one 
particle outside the double closed shells, so that, except for a possible 
gradual change with A of e0 and of the energies of the well, as well as of 
the binding energy of the core, IV0, the additional binding energy due to 
the outside particles is determined by single-particle energies, the two- 
body interaction, and the Coulomb force. Including the Coulomb force, 
the binding energy of the isotope with one particle outside the double 
closed shell is
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W(l) = W0±£0-(E^-E<0)), (43)

where the Coulomb energy, Ec, is given by the Weizsäcker mass formula26)
as

Z(Z-l)
A1/3

Mev. (44)

The binding energy of the isotope with n particles outside of the double 
closed shell is

IV(n) = W„ +21 [£o- O( - £1)] - Ve(n) - Vt(n) - (£<”’- £<»>), (45)
4 = 1

where VG is the total interaction energy of the pairing force and UL is the 
effect of the P<2> force in the ground state of the n particle system.

From Eqs. (9) and (45), one finds

- W(n) + + n s0 = V (n) + VL(n) + E<”>- E<°> (46)

for an even-A nucleus, while

-W(n) +W„ + n - U' (n) + VL (n) + £<•>- E<“> + | < ' 'V +d2 (47) 

for an odd-A nucleus. In Eq. (47) the quasi-particle energy which appears 
is the smallest one for the isotope. It is difficult to know a priori the A 
dependence of e0 and Wo or whether it should be the same for all regions. 
We make two calculations in each case, one holding £0 constant and the 
second giving £0 an A_1/3 dependence. We use the average £0 as determined 
from adjacent nuclei.

The most favourable case to consider is that of the Pb isotopes, for here 
the experiments are accurate and one knows the binding energy of the double 
closed shell isotope, Ph208, and the isotope with one hole in the neutron 
shell, Pb207. From these one finds27)

£0(Pb207) = - 7.357 ±0.043. (48)

Using (48), one has accurate experimental values for —W(n) + Wo + ne0 
for Pb206 and Pb204. In Fig. 23 these values are compared to the theoretical 
ones for G = 0, G = 0.111, and G = 0.145. One sees that both for £0 constant 
and for £0~A_1/3 the theoretical results are consistent with the data, and
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Fig. 23. Absolute binding energies of the Pb isotopes.
a and b are the experimental curves of — W(n) + Wo + ne0 for e0 constant and e0~ A-d/3)? respect­
ively; c, d, and e are the theoretical curves for U(n) + VL(ri) for G = 0.111, G = 0.145, and 
G = 0, respectively. e0 — — 7.357 from Pb208 and Pb207 experimental binding energies.27)

the value of G = about 23/A is favoured. This is consistent with the results 
of the energy level calculation. However, the errors in the experimental 
results are large enough to make this result somewhat uncertain.

For the Ni isotopes and for the AT = 82 region, one is at the beginning 
of a major shell. However, for neither of these series of isotopes is the binding 
energy known for the double closed shell and the double closed shell plus 
one nucleon isotopes. Therefore, one can merely determine if the results



Fig. 24. Binding energies of the Ni isotopes.
a is the theoretical curve of U'(n) + VL(ri) for G = 19/A, b is — W(n) + Wo + ne0 with e0~

The curves have been fit at Ni58. Curves c and d are analogous to e and a of Fig. 23, respect­
ively.

of the theoretical calculation are consistent with the known experimental 
results, and cannot experimentally determine the total binding energy of 
the n particles outside of the closed shells. However, the binding energy 
curves have considerable structure, reflecting the two-body force by a dip
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Fig. 25. Binding energy of the N = 82 isotopes.
a is the theoretical curve for U(n) + V L(ri), b and e are the values of — H’(n) + 1VO + ne0 for 
c0~ and c0 constant, respectively; they are fit at 34Xg26. Curves c and d are analogous
to a and e, respectively, for G = 0.

in the — W(n) + IV0 + 7iE0 curve for the evcn-A and odd-A nuclei separately, 
as well as the even-odd mass difference (cf. Figs. 24 and 25). In both cases, 
after the experimental curves are normalized at the first point, the dip 
is quite well reproduced if e0~A_1/3, but the statistics do not rule out a 
constant s0.
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The Sn isotopes are in the middle of a shell, forcing us once more to 
fit at one isotope; and there is very little structure to the curves except 
the rise of the Fermi level and the even-odd mass difference. For this reason 
we do not present the diagram. In this case the constant e0 seems to be 
favoured. Of course, these results depend upon the positions of the single­
particle levels which are not too well known. The N = 50 region is also in 
the middle of a shell, so the total binding energy information is not so 
useful, since one must fit at one point.

In conclusion, we see that the total binding energy data is consistent 
with the theoretical results in every case. In addition, in the Pb region, the 
results can be used to help select the G which is most favourable. There 
is an indication that the well depth changes as A-1'3 near closed shells 
and that it might have a slightly different A dependence in the middle of 
a shell than at the beginning or end. One should remember that there are 
rather large uncertainties in both the theoretical and empcrical results 
which go into drawing these conclusions.

V. Electric Quadrupole Moments

For s.c.s. odd-A nuclei described by the collective Hamiltonian (39), 
the total quadrupole moment operator is the sum of the single-particle 
and collective operators

Qo -Zq^(UrUr-VrVr.)(4.X,. + ßl-ß^+Qo. (49)
w'

The single-particle operator, Qs p , of which we have only included the 
part diagonal in the number of quasi-particles, cannot change the number 
of collective quanta (phonons); and the collective operator changes the 
number of phonons by ±1, but does not affect the quasi-particles. Thus 
Qs p contributes to the quadrupole moment in zeroth order perturbation 
theory, while the contribution from Qo first appears in a term propor­
tional to /. For a quasi-particle of angular momentum j, the single-particle 
moment is

Gs.p. = I ' -r < J I y» I j>„-, (G-F) fen
(50)
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For the coupled system, making the same assumptions needed to obtain 
(34), we obtain for the collective moment contribution

0"”1= +2GTÏ)<yl''2|7>(t'bVb|eeII. OU

so that the total quadrupole moment is given in perturbation theory by 

0 - + <j I I ./> (d~ d) A« (1 + g) ■ (52)

Quadrupole moments are known experimentally for only four of the s.c.s. 
odd-A nuclei which we consider. The experimental and theoretical moments 
calculated, using G and / which best lit other data, are shown in Table I. 
An effective charge of two units was used in the calculation.

The table compares the experimental and theoretical electric quadrupole moments of s.c.s. 
nuclei, based on the coupled system of quasi-particle and quadrupole vibration.

Table I

Isotope i z 
c ( U2 - V2) Q theoretical [ 10 24 cm2] Q experimental (10“24 cm2)

57La139 7/2 1.2 -.25 + .21 + .27

59Pr141 5/2 1.6 .44 -.36 -.05

37Rb«2 3/2 1.0 -.47 + .15 + .14

23V51 7/2 2.2 .25 -.17 + .03

It is seen that the La139 and Rb87 moments agree well with experiment. 
The theoretical moment of Pr141 is too large by a factor of 7, but this result 
could be improved considerably by the use of a different shell model well 
which would in turn alter particularly the quantity (t72—V2) in (52). 
However, it is difficult to see how the sign of the V51 moment could be changed 
within our model, for this would mean that, with only three protons beyond 
the twenty closed shell, the /ÿ/2 shell is effectively more than half filled. 
Including the (/3/2 levels below the shell in the calculation of the V’s and 
U’s does not seem to have a strong enough effect to cause this. The meager 
experimental data for the quadrupole moments of odd-A s.c.s. nuclei do 
not provide a detailed test of the nuclear wave functions. Thus, the question 
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remains open as to whether admixed configurations to the pairing force 
wave function other than those produced by the quadrupole field may also 
contribute significantly to the quadrupole moment. Also other authors have 
not succeeded in explaining the V51 moment by considering configuration 
mixing28).

VI. Magnetic Dipole Moments in Odd Nuclei
A. Magnetic Moments with Pairing and P<2) Force Model

The magnetic moment operator for the coupled system of phonons 
and quasi-particles is the sum of the quasi-particle magnetic moment and 
that of the phonon. The quasi-particle magnetic moment operator is

^s.p. X +
vj»'

Vv,-VrUr,)(4 ßl' -ßr«,.).
w'

where /( is the usual particle magnetic moment 

./ = z±2’

(jj is the total single-particle (/-factor, and

(53)

(54)

(55)

for protons and neutrons, respectively. The only non-diagonal terms in 
(53) are those for which v and v' are spin orbit partners. It is seen from 
(53) that quasi-particles have (he same magnetic moments as particles, 
since (L72+V2) = 1. This is easily understood, since particles and the cor­
responding holes also have the same magnetic moments. The second term 
in (53) plays no role since the collective Hamiltonian (29) cannot change 
the number of quasi-particles. Thus, with only pairing forces, the odd-A 
nuclei will exhibit single-particle values (the Schmidt line values) for their 
magnetic moments.

The collective Hamiltonian (39) will lead to magnetic moments different 
from single-particle values by coupling the quasi-particle to a phonon and, 
of more importance, by admixing near lying quasi-particle states. For the 
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first and less important effect we must know the //-factor, gR, for the phonon. 
This depends upon what part of the angular momentum of the collective 
2+ state comes from the protons and what part from the neutrons. Our 
model, in which the collective motion involves the extra-core particles 
together with the core (included as a renormalization effect), suggests a some­
what higher //-factor for extra-core proton than for extra-core neutron 
nuclei. However, for the calculations we have taken gR = 0.45. The phonon 
magnetic moment operator is then gRR, where R is the phonon angular 
momentum. Since neither the phonon nor quasi-particle magnetic moment 
operators can change the number of phonons, the shift of the magnetic 
moment from its single-particle value will first appear in perturbation 
theory in a term proportional to %2.

In the perturbation approximation one obtains2! from the diagonal part
of (53)

5 1 72
R = Rs.p.+ 7 îîm C' a^z

J 3

ha> \ 
h cd + Ej1 — Ej)

where and are tabulated by Bohr and Mottelson (Table V, Ref. 2) 
or can be taken as

(57 a)

V- ftr - (+1 >-i' 1 )+ 61 • <57b>

If quasi-particle states /', j" which are spin orbit partners of each other 
appear in the one phonon amplitude, there is an additional contribution 
to /< from the non-diagonal part of (53). This additional contribution is

(58)

where
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For i = j' or j = j" this expression (without the U, V factor) is equivalent 
to IV. 8, Ref. 2. The other cases where these terms can contribute are when 

and J = J" + 1.
Using (56) and (58) and the G and / which best fit other data, we have 

calculated the shift of the magnetic moment from the Schmidt line for 
all s.c.s. nuclei for which the magnetic moments are known experimentally. 
The result is that, although the shift from the single-particle moment is 
always in the right direction, it is always too small by a factor of from 
four to ten. The reason for this is the factor (UvUv>-VvVv>'), appearing 
in the collective Hamiltonian (39), which greatly weakens the coupling 
of the ground state to the collective vibration. Thus it does not seem to 
be possible to understand the shift of the quasi-particle magnetic moment 
of s.c.s. odd-A nuclei from the single-particle value on the basis of the 
coupling of the quasi-particle to the collective oscillations.29)

B. Magnetic Moments with Configurations Admixed by a Ô-Function Force

Abîma and Horie30), and Blin-Stoyle,31> have pointed out that a 
small amount of mixing of certain kinds of configurations can produce 
large changes in the magnetic moments of nuclei, without changing appreci­
ably the pure shell model configurations upon which they base their calcula­
tions.

From the results of Section A of this chapter it is clear that the configura­
tion mixing produced by the long range part of the force is insufficient 
to account for deviations of the magnetic moments from the Schmidt lines. 
Moreover, the pairing force which we use to approximate the short range 
force does diller from an actual short range ô-force in several ways. Although 
these differences do not seem to show up in calculations of the gross proper­
ties of the nuclear wave function, it is easy to see that they arc extremely 
important in calculating magnetic moments. If we assume that an improved 
Hamiltonian, HR, is of the form of a ^-function force and a P(2) force,

Hr +1JV (rt, rj) 6 (r,-f,) + W>. (60)

j ij V

then the Hamiltonian, H, used in this work is related to this Hamiltonian by
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Hr = H+V, (61)
where

v =2?u (ri’rj) 0 <ri - rj> ~ A Gu ’ (62)y y
and Gy is the pairing force as defined in Chapter If. If we use V as the per­
turbation in calculating the extra configuration mixing which plays a part 
for magnetic moments, then the calculation is quite similar to that of Ref. 30.

As these authors point out, there arc only a few kinds of admixed 
configurations which can change the magnetic moments in first order 
perturbation theory on shell model states. There are two such kinds of 
admixtures. First, when the unperturbed state has an even number of 
particles in both the j1 = Z1+l/2 and the j2 = l1-]./2 shells of a spin-orbit 
doublet, and the upper level is not filled, there are contributing configurations 
in which one particle in the lower level is elevated to the higher level, with 
a total angular momentum for particles in the two levels being unity. I.e., 
the original configuration (0)j2”2 (0) is changed to [j?1-1 (ji)jT + 1 (j2)] C1)- 
The second type is quite similar, but in this case a particle is transferred 
between the states of the particles in the odd group and its spin orbit 
partner.

Our pairing force does not admix configurations of these types and, 
since the strength of the pairing force needed in our calculations gives 
about the same gap as the force used in Ref. 30 for configurations of iden­
tical particles, we can use the same d-force to obtain the admixed con­
figurations instead of using V. As a rough check on the consistency of 
our wave functions with the experimental values of the magnetic moments, 
we carry out a configuration mixing calculation with a d-function force 
with the same parameters as used in Ref. 30. We use constant radial matrix 
elements. Our calculation differs from that of Arima and Horie only in 
that (i) our ground state wave functions are admixtures of many different 
configurations with mixture coefficients given by our pairing force calcula­
tion, the only configurations which are in our odd-A ground state wave 
functions neglecting the phonon admixtures, being of the type j”1 (0)J^2 (0) 
. . .jp~ (0) j; jni/, where j is the angular momentum of the ground state 
quasi-particle; and (ii) our wave functions contain a spread in the number 
of particles.

In Table 11 we give the results of this calculation. The wave functions 
used are those parts of the one quasi-particle states which have the correct 
number of particles. The calculation was carried out for only one Sn isotope 
since the results will be similar for the other two Sn isotopes in which the
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Table II
Magnetic moments in odd-A nuclei. p is the Schmidt value for the isotope. 
The experimental values are taken from Ref. 32.

Isotope Spin Z^s. p. Z^theor. Z^exp

Ni61......................................... (3/2)“ — 1.91 — 0.21 0
La139...................................... (7/2)+ 1.72 2.24 2.76
Pr141 ...................................... (5/2)+ 4.79 3.92 3.92
Sn115...................................... (l/2)+ — 1.91 —0.70 —0.91

magnetic moment is known. In the N = 28 region our wave functions with 
a fixed number of particles are almost pure configurations, so there is almost 
no change in the results of Ref. 30.

For the most part, our results are an average of the results of configura­
tions used in Ref. 30, although this is not always true. It would take a 
detailed calculation to prove that the magnetic moments of odd-A nuclei 
can actually be determined by this method; however, one sees that pertur­
bations of the type considered produce shifts of the magnetic moments 
from the Schmidt lines of the observed order of magnitude.

VII. Electromagnetic Transition Rates

In addition to the valuable information concerning parity and spins 
considered in § III, electromagnetic transition rates can yield much more 
detailed information about the wave functions of nuclear states. We have 
already seen how the strong enhancement of the E2 transition rates in 
even-A nuclei not only can be used to identify the collective states, but 
that the magnitude of the transition rates can help select the proper force 
strengths for our pairing and P® type of force (cf. § III. R). In this chapter, 
we investigate more systematically the electromagnetic transition rates from 
the collective 2 + states in the even-A nuclei as well as the single-particle 
part of the transitions from quasi-particle states.

A. Odd-/1 Nuclei

Electromagnetic transitions between states in odd-A nuclei will proceed 
by both particle and collective types of operators. The latter type will be 
most important for E2 transitions. Rut since there is at present no evidence 
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on this type of transition, we restrict ourselves to the single-particle part 
of the transition operator. For any single-particle operator, the matrix ele­
ment for a transition from a single quasi-particle state of angular momentum 
jt to a single quasi-particle state of angular momentum jf is given by

(V7 jfmf I © I (- <Jfmf I © I (63)

where | © | is the ordinary single-particle matrix element. In 
equation (63) the factor (—1)T is ±1, depending upon whether the 
operator is even or odd under time reversal, i.e., rOr-1 = (—1)T ©; or in 
terms of the matrix elements,

I 0 I Tjfmfy = | © (64)

The single-particle operators for the electric and magnetic 2L pole transi­
tions are

9)1 (EL) = (r) + if2 (r) a x r • grad , (65 a)

GW = /3 (r) L ■ grad Y^ + f4 (r) a ■ grad Y^, (65 b)

where the /)(r) are real functions of the scalar r. From these we see that

<rj\. 777J 3ft (EL) = (jfmf 13ft (EL) (66 a)

< TÅ- I GW I = - <Jfmf I GW I Ji mi> > (66 b)

holds for all values of L. Therefore, from equation (63)

(<Plfmf\^(EL) I (EL) |j>(> (67 a)

I I «.,) - (UffUlt+ V!fVti) <jfmf I W (ML) . (67 b)

From equations (67 a) and (67 b) one can express the lifetimes for transi­
tions between one quasi-particle states in terms of the lifetime for transi­
tions between single-particle states with the same electrical properties, 
angular momenta, and energy separation. Calling the lifetime of the, single­
particle states ts-p-33)} the reciprocal lifetimes for the single quasi-particle 
transitions are

TÎ-*/

1
(68)

with
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(£/-Â) (e^-Â)

(69 a)

(gy-Â) (fi~Â)

(69 b)

where D(ML) and D(EL) are the reduction factors for magnetic and electric 
2l pole transitions, respectively. From equation (69) one can easily see the 
effect of the pairing force upon the transition rates. If the states i and f are 

g —Â
both far above the position of the chemical potential, so that ±== 1,

the transition rate is single-particle. This is the case when the probablility 
of the ground state containing a configuration with particles in these states 
is almost zero. As one adds particles, Â approaches the value ef, from below, 
and both the electric and magnetic reduction factors diminish in size, but 
the reduction of the electric transitions below the single-particle value is 
faster than the reduction in the magnetic transitions. For example, when 
gf-gy«Zl, by the time z = £y, equation (69) shows D(ML) = 1 while 
D(EL) = 0. This is quite a different behaviour than would be predicted by 
a pure shell model or a shell model with a diagonal pairing energy. (By a 
diagonal pairing force we mean a pairing force which acts within each 
j-shell with no matrix elements between different /-shells). For instance, 
in the magnetic case, the non-diagonal matrix elements of the pairing force 
are very important in keeping the matrix element approximately constant 
while the chemical potential, Â, moves through two close lying levels. This 
feature depends simply on populating both of these states equally. Since 
one does not do this in either a non-interacting shell model or with a 
diagonal pairing force, the magnitude of the reduction factor will vary 
much more in these cases as the number of particles is changed. Generally, 
the result is that the magnetic transitions tend to vary rather more gradually 
with changes in the number of particles than the shell model result, and 
that the electric transitions can display strong reductions even in pure 
quasi-particle states. In comparing the experimental transition rates to the 
theoretical ones it is most significant to compare the experimental with

Mat.Fys.Medd.Dan.Vid.Selsk. 32, no. 9. 5
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Fig. 26. M4 transition rate in odd-A Pb isotopes.
Curves a, b, c are the theoretical values of the reduction from single-particle for G = 30/A, 
23/A, and 19/A. The experimental values19) are normalized at Pb222.

the theoretical reduction factors in order to remove the very large effects 
of energy differences.

In the odd-A s.c.s. nuclei, the only lifetimes which have been measured 
are those of the isomeric states. The most complete results are for the Pb 
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isotopes, for which the M4 transitions between the z13/2 and f5/2 states have 
served so well to trace the position of the z13/2 state (cf. Chapter III). 
The lifetimes arc measured in Pb207, Pb203, Pb201, Pb199, and Pb197 19h 
The comparison of the experimental reduction factors with the prediction 
of the pairing force calculation is made in Fig. 26. The single-particle ‘2L 
pole electromagnetic transition rate has an energy dependence given by 
ÇEÎ- Ef)2L+1. Using this dependence and the experimental lifetimes, ener­
gies, and conversion coefficients, one finds that the experimental reduction 
is almost constant for the five isotopes. These “experimental” reduction fac­
tors are based on a comparison with a single-particle estimate which neglects 
shell effects on the nuclear radii, an approximation which could affect 
the relative M4 reduction factors, where the nuclear radius enters in the 
sixth power.

The values plotted in the figure are normalized to the Pb207 value, 
which is unity in our model. Because of the uncertainty in the experimental 
reduction factor, a detailed comparison with the theoretical curves may 
not be significant. It is of interest, however, that, for the values of G indicated 
by other evidence, the Af4 reduction factors are indeed expected to vary 
only little over the isotopes considered. As already mentioned, this would

Table III
Electromagnetic transitions in one quasi-particlc states. Dexp = Pexp/Psp, 
where Ps p is a theoretical estimate of the transition when treated as single­
particle.33) Dtheor is for G = 0.128 in Pb, 0.187 in Sn, and 0.238 in N = 50. 
a0 is the radius parameter.

Element Transition
Assumed Level

Change
^exp

(a0=L2)
■®exp

(a0 = t-1)
-^theor.

Pb207 .............. 1.064 M4 z13/2_>/5/2 0.25 0.42 1.00
ptø205 ,13/2_>/5/2 0.93
ptø203 0.825 M4 I'13/2_>/5/2 0.30 0.49 0.85

Pb201.............. 0.629 M4 l’13/2->/5/2 0.24 0.41 0.78

Pb199.............. 0.424 M4 i13/2_>/5/2 0.26 0.44 0.73

Pb197.............. 0.235 M4 z13/2—>/ö/2 0.27 0.46 0.70

Pb195.............. i’13/2>/5/2 0.70

Sn117.............. 0.159 M4 )iU/2_>^3/2 0.41 0.68 0.96

Sn119.............. 0.065 M4 ^ll^-*6^ 0.57 0.95 0.94

39 1 50 ..................... 0.913 M4 9,9/2_>Pl/2 0.26 0.43 0.68
4«................. 0.105 M4 9'9/2->Pl/2 0.20 0.33 0.48
43TC- ................. 0.390 M4 Pl/2->9r9/2 0.35 0.59 0.65

5*
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not have been the case if the configuration mixing introduced by the 
pairing force had not been taken into account. As to the absolute values 
of the transition probabilities, the single-particle estimate for the expected 
nuclear radius is larger by a factor of two or three than the experimental 
value for Pb207 ; however, there is considerable uncertainty in the theoretical 
single-particle estimate (cf. Table III, p. 67).

The lifetimes of the h11/2 slates are known in Sn117 and Sn119 34!. The 
internal conversion coefficients, which are quite large for these transitions, 
have not been measured. However, the errors in the values of Dexp, the 
experimental reduction factor introduced by using the theoretical values of 
the internal conversion coefficients35!, are less than those due to the uncer­
tainty in the single-particle estimate. The theoretical value of the M4 reduction 
factor in the pairing force calculation is almost unity, since in this case the 
separation between the <73/2 and 7i11/2 levels is small compared to the gap. 
These results would be approximately unaltered for any values of the pairing 
strength and of the single-particle energies which fit the spins and energy 
levels, as well as the 2+->0+ transition rates of the Sn isotopes. Table III, 
in which 7>theor, the value of the reduction factor in the pairing calculation, 
is calculated with a pairing strength and single-particle energy levels used 
to give the results shown in Fig. 6, indicates that the experimental and 
theoretical results are consistent.

In the N = 50 region, lifetimes have been measured for three M4 transi­
tions between the p1/2 and p9/2 states: 39Y89, 41Nb91, and 43Tc93 21). Using 
the theroretical conversion coefficients, one finds that the reduction factors 
given by the experiments and the single-particle estimates arc consistent 
with the pairing force results. The values of Z>theor quoted in the table are 
calculated from the energy levels and pairing strength which leads to the 
energy levels of Fig 13. The heightened reduction in the M4 matrix ele­
ments for 41Nb9J apparently reflects the diminution in the gap due to the 
filling of the level with spin 1/2, which is far in energy from other levels, 
as discussed in § III. The relative values of the experimental reduction 
factors also show a dip for Nb91 compared to Y89 and Tc93, although this 
might not be accurate enough to be significant.

In the N = 82 region the lifetimes are known for the 0.165 Alev Ml 
transition in La139 and the 0.142 Alev Ml transition in Pr141. However, 
both of these transitions arc “/-forbidden”, and a configuration mixing 
calculation of the same kind as was used for magnetic moments (§ A7) 
would therefore be needed in order to account for these transitions36!. The 
0.024 Alev transition in Sn119 is also /-forbidden.
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In a similar way, perturbations must also admix other configurations 
to all the single quasi-particle states. The amount of admixture would 
presumably depend upon the unperturbed states, and thus would vary 
for a one quasi-particle state of a particular type as the number of particles 
changes. Such effects could alter some of the quantitative results, for 
instance, in the Af4 reduction factors.

B. Even-.<4 Nuclei

1. Single-Particle Transitions in Two Quasi-Particle States
In the same way as the result (68) was obtained for one quasi-particle 

states, for a transition between two states which can be described as two 
quasi-particle states, xPi the reciprocal lifetime is given by

1

Tt->/
(70)

where Ts,p- is the single-particle lifetime*  for the electromagnetic (2)£ 
multipole transition

The best experimental comparison can be made for transitions from 
the high angular momentum odd-parity states discussed in § III. These 
states may often represent rather unique quasi-particle configurations. 
We restrict our discussion to those cases in which the experimental life­
times are known.

The 7_ to 6~ El transition in Sn170 is reduced about 2.5 x 10 8 com­
pared to a single-particle estimate. Since there are no possible shell model 
configurations in this region of isotopes which would lead to El transitions, 
any shell model theory would lead to a transition rate of essentially zero.

The half-life of the 2.2 Mev state in Ph206 is 1.25 x 10 4 sec.22), 37). 
We predict that this 7“ state is mainly a combination of an z'13/2 quasi- 
particle coupled with a p3/2 quasi-particle and an f5l2 quasi-particle. The 
2.00 and 1.68 Mev 4+ states to which the 7“ states decay by E3 transi­
tions are mainly combinations of the an(l (^5/2)4 two quasi-
particle states. For these main parts of the wave functions the E3 single-

* in Eq. (70) is related to Moszkowski’s in Ref. 33 by I J I J

Moszkowski.
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particle transition is forbidden. There will also be a certain amount of the 
(/ö/2 ^7/2)4 and (j°3/2 fuzh two quasi-particle states in these 4+ states, which 
allow the E3 transitions; however, we expect the transition rate to be far 
below single-particle. In units of the single-particle estimate, the transition

Pb
Fig. 27. Decay of the 9“ state in Pb20i.

strengths for the 0.202 and 0.516 Mev transitions are of the order of 0.3, 
which seems to be somewhat large from the considerations mentioned 
above. However, it is difficult to estimate the amount of mixing of quasi- 
particle configurations which does occur.

The half-life of the 9“ state in Pb204 is measured to be 4.02 x 103 sec38) 
for decay into two 4+ states by a 0.912 and a 0.622 Mev E5 transition. 
The 9“ state is mostly a state of an z13/2 and an /‘5/2 quasi-particle coupled
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to their maximum spin. We find that the 4+ final stale for the 0.912 Mev 
transition is mainly a state of two f5/2 quasi-particles, while the 4+ state 
associated with the 0.G62 Mev transition is mainly one with one f5/2 and 
one p3/2 quasi-particle. Of course, these states are so close in energy that 

4 +

9-13,610

5-

Fig. 28. Decay of the 9 state in Pb202.

one can expect an admixture of these configurations. Table IV shows that 
the 0.622 Mev transition is consistent with a description that it proceeds 
via a two quasi-particle transition between the states which are expected 
to dominate, the reduction factor being about 0.7. The 0.912 Mev transi­
tion, however, is enhanced compared to the theoretical value by a factor 
of the order of 100 if the transition proceeds via (*13/2/5/2)9 —>(/s/2)4 + - 
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Table IV
Electromagnetic transitions in two quasi-particle states. G = 0.128 (in Pb). 
The column titled “Assumed Level Change” indicates the type of the quasi- 
particle which changes during the transition. Where two assumptions have 
been made for the spin assignments, the states might be admixtures, with 
the first assignment having the heaviest weight. 7)exp is given in units of 
(eeff/e)2-

Element Transition Assumed Level Change -^exp
(«o=l-2)

^exp
(«0=1-1) ^theor

pfc20 6 0.516 E3 013/2 P3/217 _ + 0’13/2/ö/217_ 0.26 0.45 0.98 x prob.

0.202 E3

1/7/2 P3/214+ + [/7/2/ö/214 + 
1'13/2P3/217_ + 013/2/5/217_ 

■^/7/2P3/214++ l/7/2/5/214+ 0.18 0.29

of /7/2 quasi- 
particle in 
4+ state

Pb204 . . . 0.912 E5 F5/2 i’13/219 _-*l/5/2P3/21 4+ 47 112 0.58

1/5/2 '13/219 _->[/5/2P3/214+ 2.6 6.2 0.73

0.622 E5 1/5/2 z’13/219 1/5/2 P3/214+ 0.4 0.94 0.73

F5/2113/2 9_-*l/5/21 24+ 7 17 0.58

Pb202 0.787 E5 P5/2 1’13/2 9-^5/2124+ 37 88 0.56

1/5/2'13/219 1/5/2 P3/214+ 2.1 4.9 0.34

0.547 E5 1/5/2 '13/219 P5/2 P3/214+ 0.31 0.74 0.34

1/5/2'13/219_^-[/5/2124+ 5.6 13 0.56

0.129 E4 013/2/5/219_ 013/2 P3/214_ 0.29 0.60 0.15

Sn120 . . . 0.089 El 2.5 x 10~8 0

Even if the 4+ state is taken as a two quasi-particle state, this
E5 transition is enhanced by a factor of perhaps 5.

In Pb202 there is a situation which is almost identical to the one in 
Pb204 (cf. Fig. 28)39)> 40) : a 0.787 Mev Eb transition which might be expected 
from energy considerations to be largely between (z13/2 ^5/2)9 an(l (/s'2)4 
two quasi-particle states, and a 0.547 Mev Eb transition which might be 
expected to be largely (i13/2 f5/2^9- corresponding to the 0.912 
Mev and 0.622 Mev transitions in Pb204, respectively.

For the 0.547 Mev transition, a reduction factor of 0.34, which results 
from the pairing force calculation with the assumption of a (1'13/2/5/2)9-“^ 
(/s/2 713/2)4+ transition, is consistent with the experimental results. However, 
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the 0.787 Mev transition seems to be strongly enhanced above the theoretical 
value, resembling the 0.912 Mev transition in Pb204.

The 9“ state in Ph202 decays with a 37°/0 probability into a 5“ state 
bv a 0.129 Mev E4 transition.39) As explained in § III, the 5“ state as­
sociated with the (z’13/2 /â/2) two quasi-particle states is placed above the 
9“ state by a P(2) force in perturbation theory, while the 5“ state lies lowest 
in the (Ô3/2P3/2) two quasi-particle configuration. Moreover, these results 
are in agreement with the detailed calculations in Pb206. 41) We thus expect 
the 0.129 Mev E4 transition in Pb202 to correspond to a transition between 
the (1'13/2/5/2)9- an<i (,13/21d3/2)5- two quasi-particle states. Table IV shows 
that a theoretical reduction factor of 0.15 is consistent with the experimental 
results if we use this interpretation.

2. The 2 + ->0+ E2 Transitions
As indicated in the discussion of the choice of parameters, the B(E2) 

values for the lowest 2+->0 transition of the collective state may be 
used to determine the effective charge.42) In Table V we list the experimental 
B(E2) values together with the theoretical values for the s.c.s. nuclei for 
which the 2+ level has been seen. The theoretical values are calculated 
using (34) with eeff = 1 for the closed proton shell nuclei and eeff = 2 for 
the closed neutron shell nuclei.

It is seen that the correct value of the B(E,2) is obtained for Pb206 with 
use of the experimentally measured effective charge eeff = l.l13). The Sn 
B(jE72) values are also reasonably well accounted for by eeff = l- For the 
Ni isotopes a somewhat larger value of eeff seems to be required-----about
eeff = 1.4. All of the closed neutron shell nuclei seem to require an effective 
charge well above unity to fit the few measured values, as expected. How­
ever, the value eeff = 2 seems to be a little too high. A value eeff =1.5 would 
give a better fit to the B(E2) of these nuclei.

In conclusion, the experimental values for the reduction in the 4/4 
transition rates in the odd-A Pb isotopes appear to be rather constant, 
which is consistent with the theoretical reductions for the values of G used 
in this work. The theoretical reduction factors for M4 transitions in the other 
odd-A s.c.s. nuclei are also consistent with experiment, in all cases the reduc­
tion factor being not less than 0.5 (and greater than 0.7, except in rather 
unusual cases). This result can be extended qualitatively to other nuclei. 
In every case, the pairing correlations will tend for magnetic transitions 
to maintain the transition rate near the single-particle value even as particles
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Table V. B(E2) values
The theoretical and experimental B(F2) 0+->2 + reduced transition prob­
ability is shown for s.c.s. nuclei. The value eeff = 1 is used in computing 
the theoretical value for Ph, Sn, and Ni, and eeIf = 2 for N = 82, N = 50, 
and N = 28. In the fourth column the “single-particle” estimate B(E'2)S p 
= 3 1(F5 A4/3 e2 10-48 cm4 was used; and in the last column the experi­
mental references are given.

Isotope

B(E2)exp 
e2 10-48 cm4

Theoretical

B(^2)exp
e2 10“48cm4

Experimental

B(2?2)exp

B(£2)s.p.
Ref.

PP)2O6 0.13 0.14 4 (22)
Pb204 ...................... 0.22
pfr202 0.29
Pb200 ...................... 0.33
Sn112...................... 0.25 0.18 11 (44)
Sn114...................... 0.20 0.20 11 (44)
Sn116...................... 0.26 0.21 12 (22)
Sn118...................... 0.29 0.23 13 (22)
Sn120...................... 0.28 0.22 13 (22)
Sn422 ...................... 0.25 0.25 14 (22)
Sn424 ...................... 0.20 0.21 12 (22)
Ni58 0.020 0.072 11 (45)
Ni60........................ 0.046 0.091 13 (45)
Ni62........................ 0.071 0.083 11 (45)
Ni64........................ 0.068
Xe436 ...................... 0.34
Ba438 ...................... 0.51
Ce440 ...................... 0.73 0.36 16 (46)
Nd442 ...................... 1.01
Sr88........................ 0.180 0.13 12 (46)
Zr90......................... 0.113
Ti50........................ 0.078
Cr52........................ 0.16 0.085 14 (46)
Fe54........................ 0.23

are placed in the levels involved in the transition----- a result which might
explain the striking constancy in the M4 reduction factors throughout 
the periodic table.43)

For even-A nuclei, we conclude that our results for quasi-particle 
transition rates are consistent with experiment within the accuracy obtain­
able by our methods, with the possible exception of an enhancement of 
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certain E5 transitions in Pb204 and Pb202. For the collective states, the 
lifetimes can be used to determine the effective charge. In addition, 
in Pb206 we can use the experimentally measured value of ceft to help 
select G.

As the systematic experimental data is extended, the transition rates 
will provide a detailed test of the wave functions obtained with this model.

VIII. Summary

An approximate calculation of the properties of nuclei with one closed 
proton or neutron shell is attempted. Using the approximation methods 
introduced by the theory of superconductivity, we have calculated the 
effects of those parts of the short range part of the residual interaction 
which are common to the pairing force, obtaining the quasi-particle energies 
for several strengths, G, of the pairing force. The deformed field approxi­
mation is used to calculate the effect of the relatively long range part of the 
nuclear force, and in particular to determine the positions and B(E2)’s 
of the 2+ collective states in the even-A isotopes.

The most important systematic experimental feature for the even-A 
s.c.s. isotopes is the position of the first excited 2+ state. This state, which 
is of collective character, has a rather constant energy above the ground 
state, and is often quite a bit lower in energy than the next higher excited 
states, thus lying in the gap between the ground state and the intrinsic 
excited states.

We find a simple explanation for this 2+ state. This state, which in our 
work is always the first excited quadrupole vibrational level, is located 
below the first states of two quasi-particles, sometimes rather far below, 
as in the case of the Sn isotopes. In every case, the second excited vibra­
tional level is among the quasi-particle states so that it becomes more 
difficult to explore the possibility of higher collective states.

Also in even-A nuclei we find that we can approximately derive not 
only the positions of the 2+ levels, but also the positions of the levels of 
high angular momentum with values of the pairing and P® force which 
do not differ much from region to region, except for the A dependence 
of a volume force.

For the odd-A isotopes, the most significant systematic experimental 
feature is the gradual change in the positions of the states which correspond 



76 Nr. 9

to our one quasi-particle states, motions which are much smoother than 
those predicted by an independent shell model.

In the odd-A isotopes the positions of the quasi-particle levels do not 
depend upon the strengths of the pairing and P® force so much as upon 
the separation of the single-particle energy levels, for values of the pairing 
force which are consistent with the data in the even-A isotopes. The ground 
state spins are determined within the accuracy expected. In Ph, where both 
the single-particle well is known and systematic measurements for the posi­
tion of the i13/2 states have been made, we find that we can quite accurately 
and rather unambiguously predict the relative position of the z13/2 state.

The even-odd mass data gives values for the gap which arc in agree­
ment with our results. The determination of the absolute binding energy 
involves questions which are beyond the scope of our methods, but the 
experimental data seems to be consistent with our results.

Very little data is available on quadrupole moments of s.c.s. nuclei, 
but our calculated values are in fair agreement with experiment when 
one considers the change which can occur with the inclusion of small 
admixtures of configurations other than those arising from a pairing plus 
P(2) interaction. The magnetic moment data is much more extensive. 
Although for our wave functions the calculated magnetic moments are 
too close to the single-particle values, the small admixture of other con­
figurations can change these moments by amounts of the right order to 
agree with experiment.

The main systematic results from the theoretical study of the collective 
part of the electromagnetic transilion rate is the theoretical value for the 
effective charge. The main systematic feature which we have calculated 
for electromagnetic transitions between quasi-particle states is the tendency 
for the .1/4 reduction factors to remain rather constant for the 1*13/2 “"*" /s/2 
M4 transitions in the Pb odd-A isotopes, which seems to be indicated by 
the experiments. This feature depends essentially on the strongly mixed 
configurations which occur in our calculation. Qualitatively, this result 
would tend to lead to a rather constant reduction factor for magnetic transi­
tions compared to electric transitions, which is a possible explanation for 
the striking constancy in the 4/4 reduction factors, while the E3 reduction 
factors arc widely varying.

We conclude that the simple model which we have tried has been 
successful in deriving the observed low energy systematic features of s.c.s. 
nuclei, and that our results might serve as a good basis for a more detailed 
quantitative investigation.
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Appendix

In this Appendix we list the quantities needed to obtain the nuclear 
energy levels and wave functions for typical strengths of the pairing force 
parameter, G, and long range force parameter, X, which are consistent 
with the known energy levels. For each region, the single-particle energies, 
Sj, are given, with the subscript giving the angular momentum of the level. 
Using Eqs. (9) and (10), the quasi-particle energies are determined for 
each isotope by z and d, which is listed in the table.

The properties of the collective state are conveniently calculated from 
the quantities 31 and 33, which are included in the table for each isotope, 
defined by
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A(l)

A(2)

where <j|r2|/>y is defined in Eq. (41). The relation of these quantities 
to the collective parameters B and C of Eq. (3) is given by

A(3)

A(4)

Z = 82, holes in the N = 126 shell (Ph isotopes) for G = 0.111 Mev.

eni2 = °> £/5/2 -0.57, fps;2- 0.90. E. = 1.634. = 2.35 Mev.
U3/2 ' J 712

A 2 (Mev) zl (Mev) 21 (.Mev-1) 2) (Mev“3)

206. . 0.11 0.25 0.40 0.50

205. . 0.25 0.34

204. . 0.33 0.42 0.52 0.42

203. . 0.42 0.48

202. . 0.52 0.53 0.56 0.33

201. . 0.60 0.55
200. . 0.69 0.58 0.57 0.27

199. . 0.78 0.60

198. . 0.88 0.63 0.56 0.20

197. . 0.97 0.64
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Z = 50, neutrons in 50—126 shell (Sn isotopes) for G = 0.187 Mev.

%/2 = 0- %2-°'22’ £«l/2-1'90’ %/2_2-20- «»U/S " 2'80 MCV-

A Z (Mev) A (Mev) QI (Mev“1) (Mev-3)

108........................................... 0.17 0.97 0.33 0.061

109........................................... 0.29 0.98

110........................................... 0.44 0.98 0.34 0.057

Ill........................................... 0.60 0.97

112........................................... 0.76 0.94 0.33 0.049

113........................................... 0.97 0.90

114........................................... 1.20 0.89 0.32 0.044

115........................................... 1.43 0.92

116........................................... 1.64 0.96 0.34 0.048

117........................................... 1.81 1.00

118........................................... 1.97 1.03 0.35 0.052

119........................................... 2.12 1.05

120........................................... 2.26 1.07 0.35 0.054

121........................................... 2.40 1.08

122........................................... 2.53 1.07 0.34 0.057

123........................................... 2.65 1.06
124........................................... 2.78 1.03 0.32 0.060

125........................................... 2.88 1.00
126........................................... 3.01 0.96 0.29 0.060

127........................................... 3.12 0.90

128........................................... 3.24 0.83 0.22 0.053

129........................................... 3.36 0.72

Z = 28, neutrons in 28—50 shell (Ni isotopes) for G = 0.331 Mev.

= 0, Ef = 0.78 £„ , = 1.56, Ea , = 4.52 Mevï>3/2 Pl/2 09/2

A /. (Mev) A (Mev) QI (Mev-1) S3 (Mev-3)

58.............................................. — 0.31 0.80 0.11 0.024
59.............................................. — 0.09 0.94
60.............................................. 0.14 1.04 0.18 0.028
61.............................................. 0.38 1.11
62.............................................. 0.59 1.15 0.21 0.032
63.............................................. 0.84 1.16
64.............................................. 1.09 1.14 0.21 0.032
65.............................................. 1.39 1.08
66.............................................. 1.64 0.99 0.15 0.022
67.............................................. 1.99 0.81
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N = 82, protons in 50—82 shell for G = 0.173 Mev.
eO7/2~0- e = 2-0 MeV'

N = 50, protons in 28-—50 shell for G = 0.291 Mev.
- °- eD3K - °-6- en,2 - b8' S,OI2 - 3-4 Mev-

A 2 (Mev) A (Mev) 21 (Mev1) S8 (Mev" 3)

134............................................ — 0.41 0.54 0.13 0.053
135........................................... — 0.29 0.65
136........................................... — 0.17 0.73 0.22 0.065
137........................................... — 0.05 0.78
138........................................... 0.09 0.83 0.26 0.058
139........................................... 0.22 0.88
140........................................... 0.37 0.92 0.30 0.048
141........................................... 0.52 0.96
142........................................... 0.66 0.99 0.34 0.051
143........................................... 0.78 1.02
144........................................... 0.93 1.06 0.38 0.055
145........................................... 1.05 1.09
146........................................... 1.15 1.11 0.41 0.057

A 2 (Mev) A (Mev) 81 (Mev“1) S8 (Mev-3)

83.............................................. 0.16 0.98
84.............................................. 0.36 1.01 0.21 0.038
85.............................................. 0.58 1.01
86.............................................. 0.82 0.98 0.22 0.037
87.............................................. 1.10 0.92
88.............................................. 1.44 0.86 0.18 0.030
89.............................................. 1.83 0.83
90.............................................. 2.24 0.84 0.10 0.011
91.............................................. 2.59 0.93
92.............................................. 2.85 1.00 0.15 0.025
93.............................................. 3.08 1.04

N = 28, protons in 20—28 shell for G = 0.385 Mev.
CaS/2 ~ 0, e/7,2 - 2.5, £p3/2 = 5-57’ £/5/2 ” 6’54 MCV-

A 2 (Mev) A (Mev) 81 (Mev-1) <8 (Mev“3)

50........................................ 1.90 1.12 0.088 0.010
51........................................ 2.19 1.22
52.............................................. 2.48 1.26 0.13 0.014
53.............................................. 2.77 1.25
54.............................................. 3.08 1.18 0.14 0.013

3.45 1.02 0.13 0.011
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